58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantitative Measurement of Vocal Fold Vibration in Male Radio Performers and Healthy Controls Using High-Speed Videoendoscopy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Acoustic and perceptual studies show a number of differences between the voices of radio performers and controls. Despite this, the vocal fold kinematics underlying these differences are largely unknown. Using high-speed videoendoscopy, this study sought to determine whether the vocal vibration features of radio performers differed from those of non-performing controls.

          Method

          Using high-speed videoendoscopy, recordings of a mid-phonatory/i/ in 16 male radio performers (aged 25–52 years) and 16 age-matched controls (aged 25–52 years) were collected. Videos were extracted and analysed semi-automatically using High-Speed Video Program, obtaining measures of fundamental frequency ( f0), open quotient and speed quotient. Post-hoc analyses of sound pressure level (SPL) were also performed (n = 19). Pearson's correlations were calculated between SPL and both speed and open quotients.

          Results

          Male radio performers had a significantly higher speed quotient than their matched controls (t = 3.308, p = 0.005). No significant differences were found for f0 or open quotient. No significant correlation was found between either open or speed quotient with SPL.

          Discussion

          A higher speed quotient in male radio performers suggests that their vocal fold vibration was characterised by a higher ratio of glottal opening to closing times than controls. This result may explain findings of better voice quality, higher equivalent sound level and greater spectral tilt seen in previous research. Open quotient was not significantly different between groups, indicating that the durations of complete vocal fold closure were not different between the radio performers and controls. Further validation of these results is required to determine the aetiology of the higher speed quotient result and its implications for voice training and clinical management in performers.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical implementation of laryngeal high-speed videoendoscopy: challenges and evolution.

          High-speed videoendoscopy (HSV) captures the true intracycle vibratory behavior of the vocal folds, which allows for overcoming the limitations of videostroboscopy for more accurate objective quantification methods. However, the commercial HSV systems have not gained widespread clinical adoption because of remaining technical and methodological limitations and an associated lack of information regarding the validity, practicality, and clinical relevance of HSV. The purpose of this article is to summarize the practical, technological and methodological challenges we have faced, to delineate the advances we have made, and to share our current vision of the necessary steps towards developing HSV into a robust tool. This tool will provide further insights into the biomechanics of laryngeal sound production, as well as enable more accurate functional assessment of the pathophysiology of voice disorders leading to refinements in the diagnosis and management of vocal fold pathology. The original contributions of this paper are the descriptions of our color high-resolution HSV integration, the methods for facilitative playback and HSV dynamic segmentation, and the ongoing efforts for implementing HSV in phonomicrosurgery, as well as the analysis of the challenges and prospects for the clinical implementation of HSV, additionally supported by references to previously reported data. (c) 2007 S. Karger AG, Basel
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinically evaluated procedure for the reconstruction of vocal fold vibrations from endoscopic digital high-speed videos.

            Investigation of voice disorders requires the examination of vocal fold vibrations. State of the art is the recording of endoscopic high-speed movies which capture vocal fold vibrations in real-time. It enables investigating the interrelation between disturbances of vocal fold vibrations and voice disorders. However, the lack of clinical studies and of a standardized procedure to reconstruct vocal fold vibrations from high-speed videos constrain the clinical acceptance of the high-speed technique. An image processing approach is presented that extracts the vibrating vocal fold edges from digital high-speed movies. The initial segmentation is principally based on a seeded region-growing algorithm. Even in movies with low image quality the algorithm segments successfully the glottal area by an introduced two-dimensional threshold matrix. Following segmentation, the vocal fold edges are reconstructed from the computed time-varying glottal area. The performance of the procedure was objectively evaluated within a study comprising 372 high-speed recordings. The accuracy of vocal fold reconstruction exceeds manual segmentation results obtained by clinical experts. The algorithm reaches an information flow-rate of up to 98 images per second. The robustness and high accuracy of the procedure makes it suitable for the application in clinical routine. It enables an objective and highly accurate description of vocal fold vibrations which is essential to realize extensive clinical studies which focus on the classification of voice disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiparametric analysis of vocal fold vibrations in healthy and disordered voices in high-speed imaging.

              The aim of this study was to look for visual subjective and objective parameters of vocal fold dynamics being capable of differentiating healthy from pathologic voices in daily clinical practice applying endoscopic high-speed digital imaging (HSI). Four hundred ninety-six datasets containing 80 healthy and 416 pathologic subjects (232 functional dysphonia (FD), 13 bilateral, and 171 unilateral vocal fold nerve paralysis) were analyzed retrospectively. Videos at 4000Hz (256×256 pixel) were recorded during sustained phonation. Subjective parameters were visually evaluated and complemented by an analysis of objective parameters. Visual subjective parameters were mucosal wave, glottal closure type, glottal closure insufficiency (GI), asymmetries of the vocal folds, and phonovibrogram (PVG) symmetry. After image segmentation, objective parameters were computed: closed quotient, perturbation measures (PMs) of glottal area, and left-right asymmetry values. HSI evaluation enabled to distinguish healthy from pathologic voices. For visual subjective parameters, GI, symmetrical behavior, and PVG symmetry exhibited statistical significant differences. For 95% of the data, objective parameters could be computed. Among objective parameters, closed quotient, jitter, shimmer, harmonic-to-noise ratio, and signal-to-noise ratio for the glottal area function differentiated statistically significant normal from pathologic voices. Applying linear discriminant analysis by combining visual subjective and objective parameters, accurate classifications were made for 63.2% of the female and 87.5% of the male group for the three-class problem (healthy, FD, and unilateral vocal fold nerve paralysis). Actual acoustically applied PMs can be transferred to clinical beneficial HSI analysis. Combining visual subjective and objective basic parameters succeeds in differentiating pathologic from healthy voices. The presented evaluation can easily be included into everyday clinical practice. However, further research is needed to broaden our understanding of the variability within and across healthy and pathologic vocal fold vibrations for diagnosing voice disorders and therapy control. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                27 June 2014
                : 9
                : 6
                : e101128
                Affiliations
                [1 ]Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, Australia
                [2 ]Division of Speech and Hearing Science, The University of Hong Kong, Hong Kong, China
                Northwestern University, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SW EY PM CM. Performed the experiments: SW GW. Analyzed the data: SW GW RH. Contributed reagents/materials/analysis tools: EY GW CM PM. Wrote the paper: SW EY PM RH GW CM.

                Article
                PONE-D-13-20361
                10.1371/journal.pone.0101128
                4074127
                24971625
                fa289d33-dbbc-4c97-bacf-3bab75b8c9a1
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 17 May 2013
                : 3 June 2014
                Page count
                Pages: 8
                Funding
                The first author was supported by an Australian Postgraduate Award, a Speech Pathology Australia Postgraduate Research Grant and the Deirdre Russell Memorial Scholarship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Neuroscience
                Sensory Perception
                Psychophysics
                Psychoacoustics
                Neuroimaging
                Engineering and Technology
                Signal Processing
                Speech Signal Processing
                Medicine and Health Sciences
                Otorhinolaryngology
                Laryngology
                Speech-Language Pathology
                Speech Therapy
                Voice Disorders
                Physical Sciences
                Physics
                Acoustics
                Social Sciences
                Linguistics
                Computational Linguistics
                Linguistic Morphology
                Psycholinguistics
                Sociolinguistics
                Speech
                Structural Linguistics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article