23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Vascularization Potential of Electrospun Poly(L-Lactide-co-Caprolactone) Scaffold: The Impact for Tissue Engineering

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Electrospun nanofibers have widespread putative applications in the field of regenerative medicine and tissue engineering. When compared to naturally occurring collagen matrices, electrospun nanofiber scaffolds have two distinct advantages: they do not induce a foreign body reaction and they are not at risk for biological contamination. However, the exact substrate, structure, and production methods have yet to be defined.

          Material/Methods

          In the current study, tubular-shaped poly(L-lactide-co-caprolactone) (PLCL) constructs produced using electrospinning technology were evaluated for their potential application in the field of tissue regeneration in two separate anatomic locations: the skin and the abdomen. The constructs were designed to have an internal diameter of 3 mm and thickness of 200 μm. Using a rodent model, 20 PLCL tubular constructs were surgically implanted in the abdominal cavity and subcutaneously. The constructs were then evaluated histologically using electron microscopy at 6 weeks post-implantation.

          Results

          Histological evaluation and analysis using scanning electron microscopy showed that pure scaffolds by themselves were able to induce angiogenesis after implantation in the rat model. Vascularization was observed in both tested groups; however, better results were obtained after intraperitoneal implantation. Formation of more and larger vessels that migrated inside the scaffold was observed after implantation into the peritoneum. In this group no evidence of inflammation and better integration of scaffold with host tissue were noticed. Subcutaneous implantation resulted in more fibrotic reaction, and differences in cell morphology were also observed between the two tested groups.

          Conclusions

          This study provides a standardized evaluation of a PLCL conduit structure in two different anatomic locations, demonstrating the excellent ability of the structure to achieve vascularization. Functional, histological, and mechanical data clearly indicate prospective clinical utilization of PLCL in critical size defect regeneration.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Electrospinning: applications in drug delivery and tissue engineering.

          Despite its long history and some preliminary work in tissue engineering nearly 30 years ago, electrospinning has not gained widespread interest as a potential polymer processing technique for applications in tissue engineering and drug delivery until the last 5-10 years. This renewed interest can be attributed to electrospinning's relative ease of use, adaptability, and the ability to fabricate fibers with diameters on the nanometer size scale. Furthermore, the electrospinning process affords the opportunity to engineer scaffolds with micro to nanoscale topography and high porosity similar to the natural extracellular matrix (ECM). The inherently high surface to volume ratio of electrospun scaffolds can enhance cell attachment, drug loading, and mass transfer properties. Various materials can be electrospun including: biodegradable, non-degradable, and natural materials. Electrospun fibers can be oriented or arranged randomly, giving control over both the bulk mechanical properties and the biological response to the scaffold. Drugs ranging from antibiotics and anticancer agents to proteins, DNA, and RNA can be incorporated into electrospun scaffolds. Suspensions containing living cells have even been electrospun successfully. The applications of electrospinning in tissue engineering and drug delivery are nearly limitless. This review summarizes the most recent and state of the art work in electrospinning and its uses in tissue engineering and drug delivery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular regulation of vessel maturation.

            The maturation of nascent vasculature, formed by vasculogenesis or angiogenesis, requires recruitment of mural cells, generation of an extracellular matrix and specialization of the vessel wall for structural support and regulation of vessel function. In addition, the vascular network must be organized so that all the parenchymal cells receive adequate nutrients. All of these processes are orchestrated by physical forces as well as by a constellation of ligands and receptors whose spatio-temporal patterns of expression and concentration are tightly regulated. Inappropriate levels of these physical forces or molecules produce an abnormal vasculature--a hallmark of various pathologies. Normalization of the abnormal vasculature can facilitate drug delivery to tumors and formation of a mature vasculature can help realize the promise of therapeutic angiogenesis and tissue engineering.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vascularization in tissue engineering.

              Tissue engineering has been an active field of research for several decades now. However, the amount of clinical applications in the field of tissue engineering is still limited. One of the current limitations of tissue engineering is its inability to provide sufficient blood supply in the initial phase after implantation. Insufficient vascularization can lead to improper cell integration or cell death in tissue-engineered constructs. This review will discuss the advantages and limitations of recent strategies aimed at enhancing the vascularization of tissue-engineered constructs. We will illustrate that combining the efforts of different research lines might be necessary to obtain optimal results in the field.
                Bookmark

                Author and article information

                Journal
                Med Sci Monit
                Med. Sci. Monit
                Medical Science Monitor
                Medical Science Monitor : International Medical Journal of Experimental and Clinical Research
                International Scientific Literature, Inc.
                1234-1010
                1643-3750
                2017
                31 March 2017
                : 23
                : 1540-1551
                Affiliations
                [1 ]Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
                [2 ]Department of Plastic, Reconstructive and Aesthetic Surgery, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
                [3 ]Institute of Fundamental Technological Research, Polish Academy of Science, Warsaw, Poland
                [4 ]Chair and Department of Surgical Oncology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
                [5 ]Department of Clinical Pathomorphology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
                [6 ]Department of Oncologic Pathology, Poznań University of Medical Sciences and Greater Poland Oncology Center, Poznań, Poland
                [7 ]Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
                [8 ]Department of Plastic Surgery, University Hospitals – Case Medical Center, Cleveland, OH, U.S.A.
                [9 ]Department of Urology and Oncological Urology, Nicolaus Copernicus Hospital, Toruń, Poland
                Author notes
                Corresponding Author: Tomasz Kloskowski, e-mail: tomaszkloskowski@ 123456op.pl
                [A]

                Study Design

                [B]

                Data Collection

                [C]

                Statistical Analysis

                [D]

                Data Interpretation

                [E]

                Manuscript Preparation

                [F]

                Literature Search

                [G]

                Funds Collection

                [*]

                These two authors contributed equally during the preparation of the manuscript

                Article
                899659
                10.12659/MSM.899659
                5386432
                28360409
                fa29c267-3863-40d9-987c-1b1bd510abd0
                © Med Sci Monit, 2017

                This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

                History
                : 20 May 2016
                : 18 July 2016
                Categories
                Animal Study

                polymers,regenerative medicine,tissue engineering,tissue scaffolds,urinary diversion

                Comments

                Comment on this article