18
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Music for Monkeys: Building Methods to Design with White-Faced Sakis for Animal-Driven Audio Enrichment Devices

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Animals living in captivity can benefit from new forms of technological enrichment, with auditory enrichment currently being underutilized. Here, we investigate how to provide zoo-housed white-faced saki monkeys with auditory enrichment in an animal-centred manner. To study this, we prototyped and developed an interactive system that the sakis could trigger to play audio and that tracked their interactions with the device. Importantly, we incorporated this system into the regular living environment of the sakis and developed the interaction in a way that gave them control over activating the sounds. Based on the results, we conclude that audio is a promising way to provide enrichment for small primates like sakis. Utilising our device, we demonstrate that the sakis triggered the traffic audio more than silence, rain, zen, and electronic music, with no differences between the other conditions. However, we highlight problems in using this behaviour to infer the sakis preference or how they like the system, with further research needed towards sounds for audio enrichment. Our method reveals the value of collecting early real-world data and prototyping when designing interactive technologies for zoo-housed animals. In this experiment, we found that animal-centred methods can help create technologies better suited to their purpose and ultimately towards the end-goal of improving animal welfare.

          Abstract

          Computer systems for primates to listen to audio have been researched for a long time. However, there is a lack of investigations into what kind of sounds primates would prefer to listen to, how to quantify their preference, and how audio systems and methods can be designed in an animal-focused manner. One pressing question is, if given the choice to control an audio system, would or could primates use such a system. In this study, we design an audio enrichment prototype and method for white-faced sakis that allows them to listen to different sounds in their regular zoo habitat while automatically logging their interactions. Focusing on animal-centred design, this prototype was built from low fidelity testing of different forms within the sakis’ enclosure and gathering requirements from those who care for and view the animal. This process of designing in a participatory manner with the sakis resulted in an interactive system that was shown to be viable, non-invasive, highly interactive, and easy to use in a zoo habitat. Recordings of the sakis’ interactions demonstrated that the sakis triggered traffic audio more than silence, rain sounds, zen, and electronic music. The data and method also highlight the benefit of a longitudinal study within the animals’ own environment to mitigate against the novelty effect and the day-to-day varying rhythm of the animals and the zoo environment. This study builds on animal-centred methods and design paradigms to allow the monitoring of the animals’ behaviours in zoo environments, demonstrating that useful data can be yielded from primate-controlled devices. For the Animal-Computer Interaction community, this is the first audio enrichment system used in zoo contexts within the animals own environment over a long period of time that gives the primate control over their interactions and records this automatically.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: not found
          • Article: not found

          Sensory stimulation as environmental enrichment for captive animals: A review

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nonhuman primates prefer slow tempos but dislike music overall.

            Human adults generally find fast tempos more arousing than slow tempos, with tempo frequently manipulated in music to alter tension and emotion. We used a previously published method [McDermott, J., & Hauser, M. (2004). Are consonant intervals music to their ears? Spontaneous acoustic preferences in a nonhuman primate. Cognition, 94(2), B11-B21] to test cotton-top tamarins and common marmosets, two new-World primates, for their spontaneous responses to stimuli that varied systematically with respect to tempo. Across several experiments, we found that both tamarins and marmosets preferred slow tempos to fast. It is possible that the observed preferences were due to arousal, and that this effect is homologous to the human response to tempo. In other respects, however, these two monkey species showed striking differences compared to humans. Specifically, when presented with a choice between slow tempo musical stimuli, including lullabies, and silence, tamarins and marmosets preferred silence whereas humans, when similarly tested, preferred music. Thus despite the possibility of homologous mechanisms for tempo perception in human and nonhuman primates, there appear to be motivational ties to music that are uniquely human.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Are consonant intervals music to their ears? Spontaneous acoustic preferences in a nonhuman primate.

              Humans find some sounds more pleasing than others; such preferences may underlie our enjoyment of music. To gain insight into the evolutionary origins of these preferences, we explored whether they are present in other animals. We designed a novel method to measure the spontaneous sound preferences of cotton-top tamarins, a species that has been extensively tested for other perceptual abilities. Animals were placed in a V-shaped maze, and their position within the maze controlled their auditory environment. One sound was played when they were in one branch of the maze, and a different sound for the opposite branch; no food was delivered during testing. We used the proportion of time spent in each branch as a measure of preference. The first two experiments were designed as tests of our method. In Experiment 1, we used loud and soft white noise as stimuli; all animals spent most of their time on the side with soft noise. In Experiment 2, tamarins spent more time on the side playing species-specific feeding chirps than on the side playing species-specific distress calls. Together, these two experiments suggest that the method is effective, providing a spontaneous measure of preference. In Experiment 3, however, subjects showed no preference for consonant over dissonant intervals. Finally, tamarins showed no preference in Experiment 4 for a screeching sound (comparable to fingernails on a blackboard) over amplitude-matched white noise. In contrast, humans showed clear preferences for the consonant intervals of Experiment 3 and the white noise of Experiment 4 using the same stimuli and a similar method. We conclude that tamarins' preferences differ qualitatively from those of humans. The preferences that support our capacity for music may, therefore, be unique among the primates, and could be music-specific adaptations.
                Bookmark

                Author and article information

                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                30 September 2020
                October 2020
                : 10
                : 10
                : 1768
                Affiliations
                Department of Computer Science, Aalto University, 02150 Espoo, Finland; ilyena.hirskyj-douglas@ 123456aalto.fi
                Author notes
                Author information
                https://orcid.org/0000-0001-6950-0570
                Article
                animals-10-01768
                10.3390/ani10101768
                7601504
                33007808
                fa2be9b9-7353-4875-9772-85ecfed45ad2
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 July 2020
                : 23 September 2020
                Categories
                Article

                white-faced saki,animal–computer interaction,animal technology,audio enrichment

                Comments

                Comment on this article