19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extracellular Vesicles-mediated recombinant IL-10 protects against ascending infection-associated preterm birth by reducing fetal inflammatory response

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Fetal inflammatory response mediated by the influx of immune cells and activation of pro-inflammatory transcription factor NF-κB in feto-maternal uterine tissues is the major determinant of infection-associated preterm birth (PTB, live births < 37 weeks of gestation).

          Objective

          To reduce the incidence of PTB by minimizing inflammation, extracellular vesicles (EVs) were electroporetically engineered to contain anti-inflammatory cytokine interleukin (IL)-10 (eIL-10), and their efficacy was tested in an ascending model of infection (vaginal administration of E. coli) induced PTB in mouse models.

          Study design

          EVs (size: 30-170 nm) derived from HEK293T cells were electroporated with recombinant IL-10 at 500 volts and 125 Ω, and 6 pulses to generate eIL-10. eIL-10 structural characters (electron microscopy, nanoparticle tracking analysis, ExoView [size and cargo content] and functional properties (co-treatment of macrophage cells with LPS and eIL-10) were assessed. To test efficacy, CD1 mice were vaginally inoculated with E. coli (10 10CFU) and subsequently treated with either PBS, eIL-10 (500ng) or Gentamicin (10mg/kg) or a combination of eIL-10+gentamicin. Fetal inflammatory response in maternal and fetal tissues after the infection or treatment were conducted by suspension Cytometer Time of Flight (CyTOF) using a transgenic mouse model that express red fluorescent TdTomato (mT+) in fetal cells.

          Results

          Engineered EVs were structurally and functionally stable and showed reduced proinflammatory cytokine production from LPS challenged macrophage cells in vitro. Maternal administration of eIL-10 (10 µg/kg body weight) crossed feto-maternal barriers to delay E. coli-induced PTB to deliver live pups at term. Delay in PTB was associated with reduced feto-maternal uterine inflammation (immune cell infiltration and histologic chorioamnionitis, NF-κB activation, and proinflammatory cytokine production).

          Conclusions

          eIL-10 administration was safe, stable, specific, delayed PTB by over 72 hrs and delivered live pups. The delivery of drugs using EVs overcomes the limitations of in-utero fetal interventions. Protecting IL-10 in EVs eliminates the need for the amniotic administration of recombinant IL-10 for its efficacy.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiology and causes of preterm birth

          Summary This paper is the first in a three-part series on preterm birth, which is the leading cause of perinatal morbidity and mortality in developed countries. Infants are born preterm at less than 37 weeks' gestational age after: (1) spontaneous labour with intact membranes, (2) preterm premature rupture of the membranes (PPROM), and (3) labour induction or caesarean delivery for maternal or fetal indications. The frequency of preterm births is about 12–13% in the USA and 5–9% in many other developed countries; however, the rate of preterm birth has increased in many locations, predominantly because of increasing indicated preterm births and preterm delivery of artificially conceived multiple pregnancies. Common reasons for indicated preterm births include pre-eclampsia or eclampsia, and intrauterine growth restriction. Births that follow spontaneous preterm labour and PPROM—together called spontaneous preterm births—are regarded as a syndrome resulting from multiple causes, including infection or inflammation, vascular disease, and uterine overdistension. Risk factors for spontaneous preterm births include a previous preterm birth, black race, periodontal disease, and low maternal body-mass index. A short cervical length and a raised cervical-vaginal fetal fibronectin concentration are the strongest predictors of spontaneous preterm birth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis.

            Acute myeloid leukemia (AML) manifests as phenotypically and functionally diverse cells, often within the same patient. Intratumor phenotypic and functional heterogeneity have been linked primarily by physical sorting experiments, which assume that functionally distinct subpopulations can be prospectively isolated by surface phenotypes. This assumption has proven problematic, and we therefore developed a data-driven approach. Using mass cytometry, we profiled surface and intracellular signaling proteins simultaneously in millions of healthy and leukemic cells. We developed PhenoGraph, which algorithmically defines phenotypes in high-dimensional single-cell data. PhenoGraph revealed that the surface phenotypes of leukemic blasts do not necessarily reflect their intracellular state. Using hematopoietic progenitors, we defined a signaling-based measure of cellular phenotype, which led to isolation of a gene expression signature that was predictive of survival in independent cohorts. This study presents new methods for large-scale analysis of single-cell heterogeneity and demonstrates their utility, yielding insights into AML pathophysiology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interleukin-10 and the interleukin-10 receptor.

              Interleukin-10 (IL-10), first recognized for its ability to inhibit activation and effector function of T cells, monocytes, and macrophages, is a multifunctional cytokine with diverse effects on most hemopoietic cell types. The principal routine function of IL-10 appears to be to limit and ultimately terminate inflammatory responses. In addition to these activities, IL-10 regulates growth and/or differentiation of B cells, NK cells, cytotoxic and helper T cells, mast cells, granulocytes, dendritic cells, keratinocytes, and endothelial cells. IL-10 plays a key role in differentiation and function of a newly appreciated type of T cell, the T regulatory cell, which may figure prominently in control of immune responses and tolerance in vivo. Uniquely among hemopoietic cytokines, IL-10 has closely related homologs in several virus genomes, which testify to its crucial role in regulating immune and inflammatory responses. This review highlights findings that have advanced our understanding of IL-10 and its receptor, as well as its in vivo function in health and disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                04 August 2023
                2023
                : 14
                : 1196453
                Affiliations
                [1] 1 Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston , Galveston, TX, United States
                [2] 2 Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wexner Medical Center, The Ohio State University , Columbus, OH, United States
                [3] 3 Department of Pediatrics, Women & Infants Hospital of Rhode Island , Providence, RI, United States
                Author notes

                Edited by: Pietro Ghezzi, University of Urbino Carlo Bo, Italy

                Reviewed by: Andrea Canellada, University of Buenos Aires, Argentina; Marian Kacerovsky, University Hospital Hradec Kralove, Czechia; Ivana Musilova, Charles University, Czechia

                *Correspondence: Ramkumar Menon, ra2menon@ 123456utmb.edu
                Article
                10.3389/fimmu.2023.1196453
                10437065
                37600782
                fa3b7c4a-1e53-4745-912a-929c94e1683c
                Copyright © 2023 Kammala, Mosebarger, Radnaa, Rowlinson, Vora, Fortunato, Sharma, Safarzadeh and Menon

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 March 2023
                : 18 July 2023
                Page count
                Figures: 9, Tables: 0, Equations: 0, References: 122, Pages: 23, Words: 13394
                Funding
                This study is supported by NIH/NICHD UH3 TR003283-03 grant to Dr.Ramkumar Menon and NIH/NICHD R03 HD108495-01 to Dr. Ananth Kumar Kammala.
                Categories
                Immunology
                Original Research
                Custom metadata
                Inflammation

                Immunology
                pregnancy,extracellular vesicles,ascending infection,fetal membranes,anti-inflammatory,antibiotics

                Comments

                Comment on this article