120
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      U1 snRNP regulates cancer cell migration and invasion in vitro

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stimulated cells and cancer cells have widespread shortening of mRNA 3’-untranslated regions (3’UTRs) and switches to shorter mRNA isoforms due to usage of more proximal polyadenylation signals (PASs) in introns and last exons. U1 snRNP (U1), vertebrates’ most abundant non-coding (spliceosomal) small nuclear RNA, silences proximal PASs and its inhibition with antisense morpholino oligonucleotides (U1 AMO) triggers widespread premature transcription termination and mRNA shortening. Here we show that low U1 AMO doses increase cancer cells’ migration and invasion in vitro by up to 500%, whereas U1 over-expression has the opposite effect. In addition to 3’UTR length, numerous transcriptome changes that could contribute to this phenotype are observed, including alternative splicing, and mRNA expression levels of proto-oncogenes and tumor suppressors. These findings reveal an unexpected role for U1 homeostasis (available U1 relative to transcription) in oncogenic and activated cell states, and suggest U1 as a potential target for their modulation.

          Abstract

          U1 snRNP is a key regulator of mRNA biogenesis through its roles in splicing, and transcription and 3’-end processing. Here the authors show a tumor suppressor-like function of U1 snRNP using in vitro cell migration/invasion assays and transcriptome profiling.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Roles for microRNAs in conferring robustness to biological processes.

          Biological systems use a variety of mechanisms to maintain their functions in the face of environmental and genetic perturbations. Increasing evidence suggests that, among their roles as posttranscriptional repressors of gene expression, microRNAs (miRNAs) help to confer robustness to biological processes by reinforcing transcriptional programs and attenuating aberrant transcripts, and they may in some network contexts help suppress random fluctuations in transcript copy number. These activities have important consequences for normal development and physiology, disease, and evolution. Here, we will discuss examples and principles of miRNAs that contribute to robustness in animal systems. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vitro cell migration and invasion assays.

            Determining the migratory and invasive capacity of tumor and stromal cells and clarifying the underlying mechanisms is most relevant for novel strategies in cancer diagnosis, prognosis, drug development and treatment. Here we shortly summarize the different modes of cell travelling and review in vitro methods, which can be used to evaluate migration and invasion. We provide a concise summary of established migration/invasion assays described in the literature, list advantages, limitations and drawbacks, give a tabular overview for convenience and depict the basic principles of the assays graphically. In many cases particular research problems and specific cell types do not leave a choice for a broad variety of usable assays. However, for most standard applications using adherent cells, based on our experience we suggest to use exclusion zone assays to evaluate migration/invasion. We substantiate our choice by demonstrating that the advantages outbalance the drawbacks e.g. the simple setup, the easy readout, the kinetic analysis, the evaluation of cell morphology and the feasibility to perform the assay with standard laboratory equipment. Finally, innovative 3D migration and invasion models including heterotypic cell interactions are discussed. These methods recapitulate the in vivo situation most closely. Results obtained with these assays have already shed new light on cancer cell spreading and potentially will uncover unknown mechanisms. Copyright © 2012 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Promoter directionality is controlled by U1 snRNP and polyadenylation signals

              Summary Transcription of the mammalian genome is pervasive but productive transcription outside protein-coding genes is limited by unknown mechanisms 1 . In particular, although RNA polymerase II (RNAPII) initiates divergently from most active gene promoters, productive elongation occurs primarily in the sense coding direction 2–4 . Here we show that asymmetric sequence determinants flanking gene transcription start sites (TSS) control promoter directionality by regulating promoter-proximal cleavage and polyadenylation. We find that upstream antisense RNAs (uaRNAs) are cleaved and polyadenylated at poly (A) sites (PAS) shortly after their initiation. De novo motif analysis reveals PAS signals and U1 snRNP (U1) recognition sites as the most depleted and enriched sequences, respectively, in the sense direction relative to the upstream antisense direction. These U1 and PAS sites are progressively gained and lost, respectively, at the 5′ end of coding genes during vertebrate evolution. Functional disruption of U1 snRNP activity results in a significant increase in promoter-proximal cleavage events in the sense direction with slight increases in the antisense direction. These data suggests that a U1-PAS axis characterized by low U1 recognition and high density of PAS in the upstream antisense region reinforces promoter directionality by promoting early termination in upstream antisense regions whereas proximal sense PAS signals are suppressed by U1 snRNP. We propose that the U1-PAS axis limits pervasive transcription throughout the genome.
                Bookmark

                Author and article information

                Contributors
                gdreyfuss@hhmi.upenn.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                7 January 2020
                7 January 2020
                2020
                : 11
                : 1
                Affiliations
                ISNI 0000 0004 1936 8972, GRID grid.25879.31, Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, , University of Pennsylvania School of Medicine, ; Philadelphia, PA 19104-6148 USA
                Author information
                http://orcid.org/0000-0003-0385-7168
                http://orcid.org/0000-0001-8129-8774
                Article
                13993
                10.1038/s41467-019-13993-7
                6946686
                31911652
                fa3d0537-41a2-43bd-84c6-adccbaf0c5ed
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 26 July 2019
                : 11 December 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000057, U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS);
                Award ID: R01GM112923
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                cancer,cell biology,non-coding rnas,transcription
                Uncategorized
                cancer, cell biology, non-coding rnas, transcription

                Comments

                Comment on this article