48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Red ginseng abrogates oxidative stress via mitochondria protection mediated by LKB1-AMPK pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Korean ginseng ( Panax ginseng C.A. Meyer) has been used as a botanical medicine throughout the history of Asian traditional Oriental medicine. Formulated red ginseng (one form of Korean ginseng) has been shown to have antioxidant and chemopreventive effects.

          Methods

          This study investigated the cytoprotective effects and mechanism of action of Korean red ginseng extract (RGE) against severe ROS production and mitochondrial impairment in a cytotoxic cell model induced by AA + iron.

          Results

          RGE protected HepG2 cells from AA + iron-induced cytotoxicity by preventing the induction of mitochondrial dysfunction and apoptosis. Moreover, AA + iron-induced production of ROS and reduction of cellular GSH content (an important cellular defense mechanism) were remarkably attenuated by treatment with RGE. At the molecular level, treatment with RGE activated LKB1-dependent AMP-activated protein kinase (AMPK), which in turn led to increased cell survival. The AMPK pathway was confirmed to play an essential role as the effects of RGE on mitochondrial membrane potential were reversed upon treatment with compound C, an AMPK inhibitor.

          Conclusions

          Our results demonstrate that RGE has the ability to protect cells from AA + iron-induced ROS production and mitochondrial impairment through AMPK activation.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase.

          The AMP-activated protein kinase (AMPK) is a critical regulator of energy balance at both the cellular and whole-body levels. Two upstream kinases have been reported to activate AMPK in cell-free assays, i.e., the tumor suppressor LKB1 and calmodulin-dependent protein kinase kinase. However, evidence that this is physiologically relevant currently only exists for LKB1. We now report that there is a significant basal activity and phosphorylation of AMPK in LKB1-deficient cells that can be stimulated by Ca2+ ionophores, and studies using the CaMKK inhibitor STO-609 and isoform-specific siRNAs show that CaMKKbeta is required for this effect. CaMKKbeta also activates AMPK much more rapidly than CaMKKalpha in cell-free assays. K(+)-induced depolarization in rat cerebrocortical slices, which increases intracellular Ca2+ without disturbing cellular adenine nucleotide levels, activates AMPK, and this is blocked by STO-609. Our results suggest a potential Ca(2+)-dependent neuroprotective pathway involving phosphorylation and activation of AMPK by CaMKKbeta.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ginseng pharmacology: multiple constituents and multiple actions.

            Ginseng is a highly valued herb in the Far East and has gained popularity in the West during the last decade. There is extensive literature on the beneficial effects of ginseng and its constituents. The major active components of ginseng are ginsenosides, a diverse group of steroidal saponins, which demonstrate the ability to target a myriad of tissues, producing an array of pharmacological responses. However, many mechanisms of ginsenoside activity still remain unknown. Since ginsenosides and other constituents of ginseng produce effects that are different from one another, and a single ginsenoside initiates multiple actions in the same tissue, the overall pharmacology of ginseng is complex. The ability of ginsenosides to independently target multireceptor systems at the plasma membrane, as well as to activate intracellular steroid receptors, may explain some pharmacological effects. This commentary aims to review selected effects of ginseng and ginsenosides and describe their possible modes of action. Structural variability of ginsenosides, structural and functional relationship to steroids, and potential targets of action are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidative stress and iron homeostasis: mechanistic and health aspects.

              Iron is an essential cofactor for important biological activities and biochemical reactions, including the transport of oxygen via red blood cells and its reduction to water during respiration. While iron's bioavailability is generally limited, pathological accumulation of the metal within tissues aggravates the generation of reactive oxygen species (ROS) and elicits toxic effects, which are mainly related to oxidative stress. Here, we describe the role of iron in ROS-induced toxicity and discuss molecular mechanisms and physiological aspects of ROS- and iron-mediated signaling. In addition, we review our current understanding of the regulation of iron homeostasis at the cellular and systemic levels, and focus on the pathogenesis and management of iron overload disorders.
                Bookmark

                Author and article information

                Journal
                BMC Complement Altern Med
                BMC Complement Altern Med
                BMC Complementary and Alternative Medicine
                BioMed Central
                1472-6882
                2013
                18 March 2013
                : 13
                : 64
                Affiliations
                [1 ]Medical research center for Globalization of Herbal Formulation, College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Korea
                [2 ]Sunlin University, Pohang, Kyungsangbuk-do 791-712, Korea
                Article
                1472-6882-13-64
                10.1186/1472-6882-13-64
                3635924
                23506615
                fa3eab63-df2f-49c4-bcd5-e7858b6afb40
                Copyright ©2013 Dong et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 September 2012
                : 26 February 2013
                Categories
                Research Article

                Complementary & Alternative medicine
                arachidonic acid,red ginseng,ampk,oxidative stress,mitochondria

                Comments

                Comment on this article