36
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of COPD (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on pathophysiological processes underlying Chronic Obstructive Pulmonary Disease (COPD) interventions, patient focused education, and self-management protocols. Sign up for email alerts here.

      39,063 Monthly downloads/views I 2.893 Impact Factor I 5.2 CiteScore I 1.16 Source Normalized Impact per Paper (SNIP) I 0.804 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metformin use and health care utilization in patients with coexisting chronic obstructive pulmonary disease and diabetes mellitus

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Chronic obstructive pulmonary disease (COPD) is associated with persistent systemic inflammation. Anti-inflammatory therapies have been shown to decrease acute exacerbations of COPD. The antidiabetic medication metformin decreases oxidative stress and inflammation and may benefit patients with COPD. We aimed at investigating the effect of metformin on health care utilizations in patients with coexisting COPD and diabetes mellitus (DM).

          Methods

          We studied 5% Medicare beneficiaries with coexisting COPD and DM prescribed metformin or other antidiabetics during the period 2007–2010. The primary outcome was COPD-specific emergency room (ER) visits and hospitalizations; the secondary outcome was all-cause ER visits and hospitalizations over the 2-year follow-up after the index antidiabetic prescription. The effects of metformin were examined by COPD complexity and compared with the effects of other antidiabetic medications.

          Results

          Among 11,260 patients, 3,193 were metformin users and 8,067 were nonusers. Metformin users were younger, were less sick, were less likely to be on oxygen, and had fewer hospitalizations in the prior year compared with the nonusers. Over a 2-year period, metformin users had lower COPD-specific and all-cause ER visits and hospitalizations (7.11% vs 9.61%, p<0.0001; and 61.63% vs 71.27%, p<0.0001, respectively). In a stratified multivariable analysis, the odds of COPD-specific ER visits and hospitalizations were lower in patients with low-complexity COPD (adjusted odds ratio =0.66, 95% confidence interval =0.52–0.85). However, patients with all COPD complexities get benefits of metformin on all-cause ER visits and hospitalizations.

          Conclusion

          The use of metformin in patients with coexisting COPD and DM was associated with fewer COPD-specific ER visits and hospitalizations, especially in low-complexity COPD.

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of mitochondrial biogenesis.

          Although it is well established that physical activity increases mitochondrial content in muscle, the molecular mechanisms underlying this process have only recently been elucidated. Mitochondrial dysfunction is an important component of different diseases associated with aging, such as Type 2 diabetes and Alzheimer's disease. PGC-1alpha (peroxisome-proliferator-activated receptor gamma co-activator-1alpha) is a co-transcriptional regulation factor that induces mitochondrial biogenesis by activating different transcription factors, including nuclear respiratory factor 1 and nuclear respiratory factor 2, which activate mitochondrial transcription factor A. The latter drives transcription and replication of mitochondrial DNA. PGC-1alpha itself is regulated by several different key factors involved in mitochondrial biogenesis, which will be reviewed in this chapter. Of those, AMPK (AMP-activated protein kinase) is of major importance. AMPK acts as an energy sensor of the cell and works as a key regulator of mitochondrial biogenesis. AMPK activity has been shown to decrease with age, which may contribute to decreased mitochondrial biogenesis and function with aging. Given the potentially important role of mitochondrial dysfunction in the pathogenesis of numerous diseases and in the process of aging, understanding the molecular mechanisms regulating mitochondrial biogenesis and function may provide potentially important novel therapeutic targets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Metformin attenuates lung fibrosis development via NOX4 suppression

            Background Accumulation of profibrotic myofibroblasts in fibroblastic foci (FF) is a crucial process for development of fibrosis during idiopathic pulmonary fibrosis (IPF) pathogenesis, and transforming growth factor (TGF)-β plays a key regulatory role in myofibroblast differentiation. Reactive oxygen species (ROS) has been proposed to be involved in the mechanism for TGF-β-induced myofibroblast differentiation. Metformin is a biguanide antidiabetic medication and its pharmacological action is mediated through the activation of AMP-activated protein kinase (AMPK), which regulates not only energy homeostasis but also stress responses, including ROS. Therefore, we sought to investigate the inhibitory role of metformin in lung fibrosis development via modulating TGF-β signaling. Methods TGF-β-induced myofibroblast differentiation in lung fibroblasts (LF) was used for in vitro models. The anti-fibrotic role of metfromin was examined in a bleomycin (BLM)-induced lung fibrosis model. Results We found that TGF-β-induced myofibroblast differentiation was clearly inhibited by metformin treatment in LF. Metformin-mediated activation of AMPK was responsible for inhibiting TGF-β-induced NOX4 expression. NOX4 knockdown and N-acetylcysteine (NAC) treatment illustrated that NOX4-derived ROS generation was critical for TGF-β-induced SMAD phosphorylation and myofibroblast differentiation. BLM treatment induced development of lung fibrosis with concomitantly enhanced NOX4 expression and SMAD phosphorylation, which was efficiently inhibited by metformin. Increased NOX4 expression levels were also observed in FF of IPF lungs and LF isolated from IPF patients. Conclusions These findings suggest that metformin can be a promising anti-fibrotic modality of treatment for IPF affected by TGF-β.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metformin reduces airway inflammation and remodeling via activation of AMP-activated protein kinase.

              Recent reports have suggested that metformin has anti-inflammatory and anti-tissue remodeling properties. We investigated the potential effect of metformin on airway inflammation and remodeling in asthma. The effect of metformin treatment on airway inflammation and pivotal characteristics of airway remodeling were examined in a murine model of chronic asthma generated by repetitive challenges with ovalbumin and fungal-associated allergenic protease. To investigate the underlying mechanism of metformin, oxidative stress levels and AMP-activated protein kinase (AMPK) activation were assessed. To further elucidate the role of AMPK, we examined the effect of 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) as a specific activator of AMPK and employed AMPKα1-deficient mice as an asthma model. The role of metformin and AMPK in tissue fibrosis was evaluated using a bleomycin-induced acute lung injury model and in vitro experiments with cultured fibroblasts. Metformin suppressed eosinophilic inflammation and significantly reduced peribronchial fibrosis, smooth muscle layer thickness, and mucin secretion. Enhanced AMPK activation and decreased oxidative stress in lungs was found in metformin-treated asthmatic mice. Similar results were observed in the AICAR-treated group. In addition, the enhanced airway inflammation and fibrosis in heterozygous AMPKα1-deficient mice were induced by both allergen and bleomycin challenges. Fibronectin and collagen expression was diminished by metformin through AMPKα1 activation in cultured fibroblasts. Therefore metformin reduced both airway inflammation and remodeling at least partially through the induction of AMPK activation and decreased oxidative stress. These data provide insight into the beneficial role of metformin as a novel therapeutic drug for chronic asthma. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                International Journal of COPD
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove Medical Press
                1176-9106
                1178-2005
                2018
                05 March 2018
                : 13
                : 793-800
                Affiliations
                [1 ]Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine
                [2 ]Office of Biostatistics
                [3 ]Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA
                Author notes
                Correspondence: Raju Bishwakarma, Valley Health, Winchester Medical Center, 1840 Amherst Street, Winchester, VA 22601, USA, Tel +1 540 536 7087, Fax +1 540 536 6625, Email rajucentury@ 123456gmail.com
                Article
                copd-13-793
                10.2147/COPD.S150047
                5842767
                29551895
                fa439d57-f53f-453d-b503-f45715de0fe5
                © 2018 Bishwakarma et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Respiratory medicine
                copd,diabetes,metformin,er visits,hospitalization,medicare
                Respiratory medicine
                copd, diabetes, metformin, er visits, hospitalization, medicare

                Comments

                Comment on this article