+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome analysis of a spontaneous mutant in sweet orange [ Citrus sinensis (L.) Osbeck] during fruit development

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Bud mutations often arise in citrus. The selection of mutants is one of the most important breeding channels in citrus. However, the molecular basis of bud mutation has rarely been studied. To identify differentially expressed genes in a spontaneous sweet orange [ C. sinensis (L.) Osbeck] bud mutation which causes lycopene accumulation, low citric acid, and high sucrose in fruit, suppression subtractive hybridization and microarray analysis were performed to decipher this bud mutation during fruit development. After sequencing of the differentially expressed clones, a total of 267 non-redundant transcripts were obtained and 182 (68.2%) of them shared homology (E-value ≤1×10 −10) with known gene products. Few genes were constitutively up- or down-regulated (fold change ≥2) in the bud mutation during fruit development. Self-organizing tree algorithm analysis results showed that 95.1% of the differentially expressed genes were extensively coordinated with the initiation of lycopene accumulation. Metabolic process, cellular process, establishment of localization, response to stimulus, and biological regulation-related transcripts were among the most regulated genes. These genes were involved in many biological processes such as organic acid metabolism, lipid metabolism, transport, and pyruvate metabolism, etc. Moreover, 13 genes which were differentially regulated at 170 d after flowering shared homology with previously described signal transduction or transcription factors. The information generated in this study provides new clues to aid in the understanding of bud mutation in citrus.

          Related collections

          Most cited references 82

          • Record: found
          • Abstract: found
          • Article: not found

          Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research.

          We present here Blast2GO (B2G), a research tool designed with the main purpose of enabling Gene Ontology (GO) based data mining on sequence data for which no GO annotation is yet available. B2G joints in one application GO annotation based on similarity searches with statistical analysis and highlighted visualization on directed acyclic graphs. This tool offers a suitable platform for functional genomics research in non-model species. B2G is an intuitive and interactive desktop application that allows monitoring and comprehension of the whole annotation and analysis process. Blast2GO is freely available via Java Web Start at -> Evaluation.
            • Record: found
            • Abstract: not found
            • Article: not found

            CAP3: A DNA sequence assembly program.

             X. Huang (1999)
            We describe the third generation of the CAP sequence assembly program. The CAP3 program includes a number of improvements and new features. The program has a capability to clip 5' and 3' low-quality regions of reads. It uses base quality values in computation of overlaps between reads, construction of multiple sequence alignments of reads, and generation of consensus sequences. The program also uses forward-reverse constraints to correct assembly errors and link contigs. Results of CAP3 on four BAC data sets are presented. The performance of CAP3 was compared with that of PHRAP on a number of BAC data sets. PHRAP often produces longer contigs than CAP3 whereas CAP3 often produces fewer errors in consensus sequences than PHRAP. It is easier to construct scaffolds with CAP3 than with PHRAP on low-pass data with forward-reverse constraints.
              • Record: found
              • Abstract: found
              • Article: not found

              A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening.

              A major component in the regulatory network controlling fruit ripening is likely to be the gene at the tomato Colorless non-ripening (Cnr) locus. The Cnr mutation results in colorless fruits with a substantial loss of cell-to-cell adhesion. The nature of the mutation and the identity of the Cnr gene were previously unknown. Using positional cloning and virus-induced gene silencing, here we demonstrate that an SBP-box (SQUAMOSA promoter binding protein-like) gene resides at the Cnr locus. Furthermore, the Cnr phenotype results from a spontaneous epigenetic change in the SBP-box promoter. The discovery that Cnr is an epimutation was unexpected, as very few spontaneous epimutations have been described in plants. This study demonstrates that an SBP-box gene is critical for normal ripening and highlights the likely importance of epialleles in plant development and the generation of natural variation.

                Author and article information

                J Exp Bot
                Journal of Experimental Botany
                Oxford University Press
                March 2009
                March 2009
                March 2009
                : 60
                : 3
                : 801-813
                National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
                Author notes
                [* ]To whom correspondence should be addressed. E-mail: xxdeng@
                © 2009 The Author(s).

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                This paper is available online free of all access charges (see for further details)

                Research Papers


                Comment on this article