Blog
About

370
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Atherosclerosis.

      Nature

      Risk Assessment, Humans, etiology, Coronary Disease, pathology, genetics, drug therapy, diagnosis, Arteriosclerosis, Animals

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atherosclerosis, a disease of the large arteries, is the primary cause of heart disease and stroke. In westernized societies, it is the underlying cause of about 50% of all deaths. Epidemiological studies have revealed several important environmental and genetic risk factors associated with atherosclerosis. Progress in defining the cellular and molecular interactions involved, however, has been hindered by the disease's aetiological complexity. Over the past decade, the availability of new investigative tools, including genetically modified mouse models of disease, has resulted in a clearer understanding of the molecular mechanisms that connect altered cholesterol metabolism and other risk factors to the development of atherosclerotic plaque. It is now clear that atherosclerosis is not simply an inevitable degenerative consequence of ageing, but rather a chronic inflammatory condition that can be converted into an acute clinical event by plaque rupture and thrombosis.

          Related collections

          Most cited references 68

          • Record: found
          • Abstract: found
          • Article: not found

          The pathogenesis of atherosclerosis: a perspective for the 1990s.

           R. Paul Ross (1993)
          Atherosclerosis, the principal cause of heart attack, stroke and gangrene of the extremities, is responsible for 50% of all mortality in the USA, Europe and Japan. The lesions result from an excessive, inflammatory-fibroproliferative response to various forms of insult to the endothelium and smooth muscle of the artery wall. A large number of growth factors, cytokines and vasoregulatory molecules participate in this process. Our ability to control the expression of genes encoding these molecules and to target specific cell types provides opportunities to develop new diagnostic and therapeutic agents to induce the regression of the lesions and, possibly, to prevent their formation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization of single-nucleotide polymorphisms in coding regions of human genes.

            A major goal in human genetics is to understand the role of common genetic variants in susceptibility to common diseases. This will require characterizing the nature of gene variation in human populations, assembling an extensive catalogue of single-nucleotide polymorphisms (SNPs) in candidate genes and performing association studies for particular diseases. At present, our knowledge of human gene variation remains rudimentary. Here we describe a systematic survey of SNPs in the coding regions of human genes. We identified SNPs in 106 genes relevant to cardiovascular disease, endocrinology and neuropsychiatry by screening an average of 114 independent alleles using 2 independent screening methods. To ensure high accuracy, all reported SNPs were confirmed by DNA sequencing. We identified 560 SNPs, including 392 coding-region SNPs (cSNPs) divided roughly equally between those causing synonymous and non-synonymous changes. We observed different rates of polymorphism among classes of sites within genes (non-coding, degenerate and non-degenerate) as well as between genes. The cSNPs most likely to influence disease, those that alter the amino acid sequence of the encoded protein, are found at a lower rate and with lower allele frequencies than silent substitutions. This likely reflects selection acting against deleterious alleles during human evolution. The lower allele frequency of missense cSNPs has implications for the compilation of a comprehensive catalogue, as well as for the subsequent application to disease association.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis.

              Chemokines are proinflammatory cytokines that function in leukocyte chemoattraction and activation and have recently been shown to block the HIV-1 infection of target cells through interactions with chemokine receptors. In addition to their function in viral disease, chemokines have been implicated in the pathogenesis of atherosclerosis. Expression of the CC chemokine monocyte chemoattractant protein-1 (MCP-1) is upregulated in human atherosclerotic plaques, in arteries of primates on a hypercholesterolaemic diet; and in vascular endothelial and smooth muscle cells exposed to minimally modified lipids. To determine whether MCP-1 is causally related to the development of atherosclerosis, we generated mice that lack CCR2, the receptor for MCP-1 (ref. 7), and crossed them with apolipoprotein (apo) E-null mice which develop severe atherosclerosis. Here we show that the selective absence of CCR2 decreases lesion formation markedly in apoE-/- mice but has no effect on plasma lipid or lipoprotein concentrations. These data reveal a role for MCP-1 in the development of early atherosclerotic lesions and suggest that upregulation of this chemokine by minimally oxidized lipids is an important link between hyperlipidaemia and fatty streak formation.
                Bookmark

                Author and article information

                Journal
                11001066
                2826222
                10.1038/35025203

                Comments

                Comment on this article