18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cinnamic acid activates PPARα to stimulate Lysosomal biogenesis and lower Amyloid plaque pathology in an Alzheimer’s disease mouse model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The response of the lysosomes, the waste clearance machinery of the cell, to different environmental stimuli is coordinated by a gene network with a master regulator Transcription factor EB (TFEB) at the core. Disruption of multiple facets of the lysosomal and autophagic network has been linked to various neurodegenerative and lysosomal storage disorders, making TFEB an attractive therapeutic target to rescue or augment lysosomal function under pathological scenario. In this study, we demonstrate that cinnamic acid, a naturally occurring plant-based product, induces lysosomal biogenesis in mouse primary brain cells via upregulation of TFEB. We delineate that cinnamic acid activates the nuclear hormone receptor PPARα to transcriptionally upregulate TFEB and stimulate lysosomal biogenesis. Moreover, using in-silico and biochemical approaches we established that cinnamic acid serves as a potent ligand for peroxisome proliferator-activated receptor α (PPARα). Finally, cinnamic acid treatment in male and female 5× Familial Alzheimer’s disease (5XFAD) mice remarkably reduced cerebral amyloid-beta plaque burden and improved memory via PPARα. Therefore, stimulation of lysosomal biogenesis by cinnamic acid may have therapeutic implications for treatment of Alzheimer’s disease and other lysosomal disorders originating from accumulation of toxic protein aggregates.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity.

          The aggregation of α-synuclein plays a major role in Parkinson disease (PD) pathogenesis. Recent evidence suggests that defects in the autophagy-mediated clearance of α-synuclein contribute to the progressive loss of nigral dopamine neurons. Using an in vivo model of α-synuclein toxicity, we show that the PD-like neurodegenerative changes induced by excess cellular levels of α-synuclein in nigral dopamine neurons are closely linked to a progressive decline in markers of lysosome function, accompanied by cytoplasmic retention of transcription factor EB (TFEB), a major transcriptional regulator of the autophagy-lysosome pathway. The changes in lysosomal function, observed in the rat model as well as in human PD midbrain, were reversed by overexpression of TFEB, which afforded robust neuroprotection via the clearance of α-synuclein oligomers, and were aggravated by microRNA-128-mediated repression of TFEB in both A9 and A10 dopamine neurons. Delayed activation of TFEB function through inhibition of mammalian target of rapamycin blocked α-synuclein induced neurodegeneration and further disease progression. The results provide a mechanistic link between α-synuclein toxicity and impaired TFEB function, and highlight TFEB as a key player in the induction of α-synuclein-induced toxicity and PD pathogenesis, thus identifying TFEB as a promising target for therapies aimed at neuroprotection and disease modification in PD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetics of Alzheimer disease.

            Alzheimer disease (AD) is the most common causes of neurodegenerative disorder in the elderly individuals. Clinically, patients initially present with short-term memory loss, subsequently followed by executive dysfunction, confusion, agitation, and behavioral disturbances. Three causative genes have been associated with autosomal dominant familial AD (APP, PSEN1, and PSEN2) and 1 genetic risk factor (APOEε4 allele). Identification of these genes has led to a number of animal models that have been useful to study the pathogenesis underlying AD. In this article, we provide an overview of the clinical and genetic features of AD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adult mouse astrocytes degrade amyloid-beta in vitro and in situ.

              Alzheimer disease (AD) is a progressive neurodegenerative disorder characterized by excessive deposition of amyloid-beta (Abeta) peptides in the brain. One of the earliest neuropathological changes in AD is the accumulation of astrocytes at sites of Abeta deposition, but the cause or significance of this cellular response is unclear. Here we show that cultured adult mouse astrocytes migrate in response to monocyte chemoattractant protein-1 (MCP-1), a chemokine present in AD lesions, and cease migration upon interaction with immobilized Abeta(1-42). We also show that astrocytes bind and degrade Abeta(1-42). Astrocytes plated on Abeta-laden brain sections from a mouse model of AD associate with the Abeta deposits and reduce overall Abeta levels in these sections. Our results suggest a novel mechanism for the accumulation of astrocytes around Abeta deposits, indicate a direct role for astrocytes in degradation of Abeta and implicate deficits in astroglial clearance of Abeta in the pathogenesis of AD. Treatments that increase removal of Abeta by astrocytes may therefore be a critical mechanism to reduce the neurodegeneration associated with AD.
                Bookmark

                Author and article information

                Journal
                9500169
                20475
                Neurobiol Dis
                Neurobiol. Dis.
                Neurobiology of disease
                0969-9961
                1095-953X
                28 December 2018
                19 December 2018
                April 2019
                01 April 2020
                : 124
                : 379-395
                Affiliations
                [a ]Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
                [b ]Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
                Author notes
                [* ]Corresponding author at: Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Suite Cohn 310, Chicago, IL 60612, USA. Kalipada_Pahan@ 123456rush.edu (K. Pahan).
                Article
                NIHMS1517565
                10.1016/j.nbd.2018.12.007
                6382282
                30578827
                fa48cd84-6e27-42e9-a22f-4b3d1b4a03bc

                This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/BY-NC-ND/4.0/).

                History
                Categories
                Article

                Neurosciences
                lysosomal biogenesis,cinnamic acid,pparα,tfeb,plaque clearance,5xfad model
                Neurosciences
                lysosomal biogenesis, cinnamic acid, pparα, tfeb, plaque clearance, 5xfad model

                Comments

                Comment on this article