19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High Sensitivity Detection of CdSe/ZnS Quantum Dot-Labeled DNA Based on N-type Porous Silicon Microcavities

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          N-type macroporous silicon microcavity structures were prepared using electrochemical etching in an HF solution in the absence of light and oxidants. The CdSe/ZnS water-soluble quantum dot-labeled DNA target molecules were detected by monitoring the microcavity reflectance spectrum, which was characterized by the reflectance spectrum defect state position shift resulting from changes to the structures’ refractive index. Quantum dots with a high refractive index and DNA coupling can improve the detection sensitivity by amplifying the optical response signals of the target DNA. The experimental results show that DNA combined with a quantum dot can improve the sensitivity of DNA detection by more than five times.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          A DNA-based method for rationally assembling nanoparticles into macroscopic materials.

          Colloidal particles of metals and semiconductors have potentially useful optical, optoelectronic and material properties that derive from their small (nanoscopic) size. These properties might lead to applications including chemical sensors, spectroscopic enhancers, quantum dot and nanostructure fabrication, and microimaging methods. A great deal of control can now be exercised over the chemical composition, size and polydispersity of colloidal particles, and many methods have been developed for assembling them into useful aggregates and materials. Here we describe a method for assembling colloidal gold nanoparticles rationally and reversibly into macroscopic aggregates. The method involves attaching to the surfaces of two batches of 13-nm gold particles non-complementary DNA oligonucleotides capped with thiol groups, which bind to gold. When we add to the solution an oligonucleotide duplex with 'sticky ends' that are complementary to the two grafted sequences, the nanoparticles self-assemble into aggregates. This assembly process can be reversed by thermal denaturation. This strategy should now make it possible to tailor the optical, electronic and structural properties of the colloidal aggregates by using the specificity of DNA interactions to direct the interactions between particles of different size and composition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications.

            Nanomaterials, such as metal or semiconductor nanoparticles and nanorods, exhibit similar dimensions to those of biomolecules, such as proteins (enzymes, antigens, antibodies) or DNA. The integration of nanoparticles, which exhibit unique electronic, photonic, and catalytic properties, with biomaterials, which display unique recognition, catalytic, and inhibition properties, yields novel hybrid nanobiomaterials of synergetic properties and functions. This review describes recent advances in the synthesis of biomolecule-nanoparticle/nanorod hybrid systems and the application of such assemblies in the generation of 2D and 3D ordered structures in solutions and on surfaces. Particular emphasis is directed to the use of biomolecule-nanoparticle (metallic or semiconductive) assemblies for bioanalytical applications and for the fabrication of bioelectronic devices.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A porous silicon-based optical interferometric biosensor.

              A biosensor has been developed based on induced wavelength shifts in the Fabry-Perot fringes in the visible-light reflection spectrum of appropriately derivatized thin films of porous silicon semiconductors. Binding of molecules induced changes in the refractive index of the porous silicon. The validity and sensitivity of the system are demonstrated for small organic molecules (biotin and digoxigenin), 16-nucleotide DNA oligomers, and proteins (streptavidin and antibodies) at pico- and femtomolar analyte concentrations. The sensor is also highly effective for detecting single and multilayered molecular assemblies.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                01 January 2017
                January 2017
                : 17
                : 1
                : 80
                Affiliations
                [1 ]School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China; lvchw@ 123456xju.edu.cn (C.L.); zhy@ 123456xju.edu.cn (H.Z.); knockout_2003@ 123456163.com (Y.L.)
                [2 ]College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
                [3 ]College of Resource and Environment sciences, Xinjiang University, Urumqi 830046, China; lvjie@ 123456xju.edu.cn
                Author notes
                [* ]Correspondence: jzhh@ 123456xju.edu.cn ; Tel.: +86-991-858-3362
                Article
                sensors-17-00080
                10.3390/s17010080
                5298653
                28045442
                fa5a2373-a2f1-47ad-baf1-ebca9e69fee3
                © 2017 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 October 2016
                : 28 December 2016
                Categories
                Article

                Biomedical engineering
                n-type porous silicon,quantum dot labeling,qd-dna,reflectance spectrum
                Biomedical engineering
                n-type porous silicon, quantum dot labeling, qd-dna, reflectance spectrum

                Comments

                Comment on this article