92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Proanthocyanidins (PAs) are the major component of phenolics in apple, but mechanisms involved in PA biosynthesis remain unclear. Here, the relationship between the PA biosynthesis and the expression of genes encoding leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) was investigated in fruit skin of one apple cultivar and three crabapples. Transcript levels of LAR1 and ANR2 genes were significantly correlated with the contents of catechin and epicatechin, respectively, which suggests their active roles in PA synthesis. Surprisingly, transcript levels for both LAR1 and LAR2 genes were almost undetectable in two crabapples that accumulated both flavan-3-ols and PAs. This contradicts the previous finding that LAR1 gene is a strong candidate regulating the accumulation of metabolites such as epicatechin and PAs in apple. Ectopic expression of apple MdLAR1 gene in tobacco suppresses expression of the late genes in anthocyanin biosynthetic pathway, resulting in loss of anthocyanin in flowers. Interestingly, a decrease in PA biosynthesis was also observed in flowers of transgenic tobacco plants overexpressing the MdLAR1 gene, which could be attributed to decreased expression of both the NtANR1 and NtANR2 genes. Our study not only confirms the in vivo function of apple LAR1 gene, but it is also helpful for understanding the mechanism of PA biosynthesis.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development.

          Proanthocyanidins (PAs; or condensed tannins) can protect plants against herbivores, contribute to the taste of many fruits, and act as dietary antioxidants beneficial for human health. We have previously shown that in grapevine (Vitis vinifera) PA synthesis involves both leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR). Here we report the characterization of a grapevine MYB transcription factor VvMYBPA1, which controls expression of PA pathway genes including both LAR and ANR. Expression of VvMYBPA1 in grape berries correlated with PA accumulation during early berry development and in seeds. In a transient assay, VvMYBPA1 activated the promoters of LAR and ANR, as well as the promoters of several of the general flavonoid pathway genes. VvMYBPA1 did not activate the promoter of VvUFGT, which encodes the anthocyanin-specific enzyme UDP-glucose:flavonoid-3-O-glucosyltransferase, suggesting VvMYBPA1 is specific to regulation of PA biosynthesis in grapes. The Arabidopsis (Arabidopsis thaliana) MYB transcription factor TRANSPARENT TESTA2 (TT2) regulates PA synthesis in the seed coat of Arabidopsis. By complementing the PA-deficient seed phenotype of the Arabidopsis tt2 mutant with VvMYBPA1, we confirmed the function of VvMYBPA1 as a transcriptional regulator of PA synthesis. In contrast to ectopic expression of TT2 in Arabidopsis, constitutive expression of VvMYBPA1 resulted in accumulation of PAs in cotyledons, vegetative meristems, leaf hairs, and roots in some of the transgenic seedlings. To our knowledge, this is the first report of a MYB factor that controls genes of the PA pathway in fruit, including both LAR and ANR, and this single MYB factor can induce ectopic PA accumulation in Arabidopsis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits.

            Strawberry (Fragaria × ananassa) fruits contain high concentrations of flavonoids. In unripe strawberries, the flavonoids are mainly represented by proanthocyanidins (PAs), while in ripe fruits the red-coloured anthocyanins also accumulate. Most of the structural genes leading to PA biosynthesis in strawberry have been characterized, but no information is available on their transcriptional regulation. In Arabidopsis thaliana the expression of the PA biosynthetic genes is specifically induced by a ternary protein complex, composed of AtTT2 (AtMYB123), AtTT8 (AtbHLH042) and AtTTG1 (WD40-repeat protein). A strategy combining yeast-two-hybrid screening and agglomerative hierarchical clustering of transcriptomic and metabolomic data was undertaken to identify strawberry PA regulators. Among the candidate genes isolated, four were similar to AtTT2, AtTT8 and AtTTG1 (FaMYB9/FaMYB11, FabHLH3 and FaTTG1, respectively) and two encode putative negative regulators (FaMYB5 and FabHLH3∆). Interestingly, FaMYB9/FaMYB11, FabHLH3 and FaTTG1 were found to complement the tt2-1, tt8-3 and ttg1-1 transparent testa mutants, respectively. In addition, they interacted in yeast and activated the Arabidopsis BANYULS (anthocyanidin reductase) gene promoter when coexpressed in Physcomitrella patens protoplasts. Taken together, these results demonstrated that FaMYB9/FaMYB11, FabHLH3 and FaTTG1 are the respective functional homologues of AtTT2, AtTT8 and AtTTG1, providing new tools for modifying PA content and strawberry fruit quality. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis.

              Condensed tannins (CTs) are flavonoid oligomers, many of which have beneficial effects on animal and human health. The flavanol (-)-epicatechin is a component of many CTs and contributes to flavor and astringency in tea and wine. We show that the BANYULS (BAN) genes from Arabidopsis thaliana and Medicago truncatula encode anthocyanidin reductase, which converts anthocyanidins to their corresponding 2,3-cis-flavan-3-ols. Ectopic expression of BAN in tobacco flower petals and Arabidopsis leaves results in loss of anthocyanins and accumulation of CTs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                10 April 2015
                2015
                : 6
                : 243
                Affiliations
                [1] 1Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences Wuhan, China
                [2] 2Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University Bangkok, Thailand
                [3] 3Graduate University of Chinese Academy of Sciences Beijing, China
                [4] 4Department of Biology, University of Massachusetts Boston Boston, MA, USA
                Author notes

                Edited by: Tiegang Lu, Chinese Academy of Agricultural Sciences, China

                Reviewed by: Zhukuan Cheng, Chinese Academy of Sciences, China; Zhong Chen, National Institute of Education/Nanyang Technological University, Singapore

                *Correspondence: Yuepeng Han, Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Lumo Road No. 1, 430074 Wuhan, China yphan@ 123456wbgcas.cn

                This article was submitted to Plant Genetics and Genomics, a section of the journal Frontiers in Plant Science

                †These authors have contributed equally to this work.

                Article
                10.3389/fpls.2015.00243
                4392590
                fa713af6-36c2-4d2d-9367-06be4e93344a
                Copyright © 2015 Liao, Vimolmangkang, Wei, Zhou, Korban and Han.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 January 2015
                : 26 March 2015
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 52, Pages: 11, Words: 7353
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                apple,anthocyanin,proanthocyanidin,leucoanthocyanidin reductase,anthocyanidin reductase

                Comments

                Comment on this article