43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intrinsic Structural Disorder Confers Cellular Viability on Oncogenic Fusion Proteins

      research-article
      1 , 1 , 2 , 1 , *
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chromosomal translocations, which often generate chimeric proteins by fusing segments of two distinct genes, represent the single major genetic aberration leading to cancer. We suggest that the unifying theme of these events is a high level of intrinsic structural disorder, enabling fusion proteins to evade cellular surveillance mechanisms that eliminate misfolded proteins. Predictions in 406 translocation-related human proteins show that they are significantly enriched in disorder (43.3% vs. 20.7% in all human proteins), they have fewer Pfam domains, and their translocation breakpoints tend to avoid domain splitting. The vicinity of the breakpoint is significantly more disordered than the rest of these already highly disordered fusion proteins. In the unlikely event of domain splitting in fusion it usually spares much of the domain or splits at locations where the newly exposed hydrophobic surface area approximates that of an intact domain. The mechanisms of action of fusion proteins suggest that in most cases their structural disorder is also essential to the acquired oncogenic function, enabling the long-range structural communication of remote binding and/or catalytic elements. In this respect, there are three major mechanisms that contribute to generating an oncogenic signal: (i) a phosphorylation site and a tyrosine-kinase domain are fused, and structural disorder of the intervening region enables intramolecular phosphorylation (e.g., BCR-ABL); (ii) a dimerisation domain fuses with a tyrosine kinase domain and disorder enables the two subunits within the homodimer to engage in permanent intermolecular phosphorylations (e.g., TFG-ALK); (iii) the fusion of a DNA-binding element to a transactivator domain results in an aberrant transcription factor that causes severe misregulation of transcription (e.g. EWS-ATF). Our findings also suggest novel strategies of intervention against the ensuing neoplastic transformations.

          Author Summary

          Chromosomal translocations generate chimeric proteins by fusing segments of two distinct genes and are frequently associated with cancer. The proteins involved are large and fairly heterogeneous in sequence and typically have only a few dispersed structural domains connected by long uncharacterized regions. It has never been studied from a structural perspective how these chimeras survive losing significant portions of the original proteins and acquire new oncogenic functions. By analyzing a collection of 406 human translocation proteins we show here that the answer to both questions lies to a large extent in the high level of structural disorder in the fusion partner proteins (on average, they are twice as disordered as all human proteins). The translocation breakpoints usually avoid globular domains. In rare cases when a globular domain is truncated by the fusion, it happens at a location in the domain where the hydrophobicity exposed by the split is favorable (i.e., not too high). Disorder on average is significantly higher in the vicinity of the breakpoint than in the rest of the fusion proteins. Disorder also plays a pivotal role in the acquired oncogenic function by bringing distant/disparate fusion segments together that enables novel intra- and/or intermolecular interactions.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Data growth and its impact on the SCOP database: new developments

          The Structural Classification of Proteins (SCOP) database is a comprehensive ordering of all proteins of known structure, according to their evolutionary and structural relationships. The SCOP hierarchy comprises the following levels: Species, Protein, Family, Superfamily, Fold and Class. While keeping the original classification scheme intact, we have changed the production of SCOP in order to cope with a rapid growth of new structural data and to facilitate the discovery of new protein relationships. We describe ongoing developments and new features implemented in SCOP. A new update protocol supports batch classification of new protein structures by their detected relationships at Family and Superfamily levels in contrast to our previous sequential handling of new structural data by release date. We introduce pre-SCOP, a preview of the SCOP developmental version that enables earlier access to the information on new relationships. We also discuss the impact of worldwide Structural Genomics initiatives, which are producing new protein structures at an increasing rate, on the rates of discovery and growth of protein families and superfamilies. SCOP can be accessed at http://scop.mrc-lmb.cam.ac.uk/scop.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            GenBank

            GenBank (R) is a comprehensive database that contains publicly available nucleotide sequences for more than 260 000 named organisms, obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects. Most submissions are made using the web-based BankIt or standalone Sequin programs and accession numbers are assigned by GenBank staff upon receipt. Daily data exchange with the European Molecular Biology Laboratory Nucleotide Sequence Database in Europe and the DNA Data Bank of Japan ensures worldwide coverage. GenBank is accessible through NCBI's retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, begin at the NCBI Homepage: www.ncbi.nlm.nih.gov
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ensembl 2008

              The Ensembl project (http://www.ensembl.org) is a comprehensive genome information system featuring an integrated set of genome annotation, databases and other information for chordate and selected model organism and disease vector genomes. As of release 47 (October 2007), Ensembl fully supports 35 species, with preliminary support for six additional species. New species in the past year include platypus and horse. Major additions and improvements to Ensembl since our previous report include extensive support for functional genomics data in the form of a specialized functional genomics database, genome-wide maps of protein–DNA interactions and the Ensembl regulatory build; support for customization of the Ensembl web interface through the addition of user accounts and user groups; and increased support for genome resequencing. We have also introduced new comparative genomics-based data mining options and report on the continued development of our software infrastructure.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                October 2009
                October 2009
                30 October 2009
                : 5
                : 10
                : e1000552
                Affiliations
                [1 ]Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
                [2 ]Department of Medical Chemistry, Semmelweis University Medical School, Budapest, Hungary
                Fox Chase Cancer Center, United States of America
                Author notes

                Conceived and designed the experiments: PT. Analyzed the data: HH LB. Wrote the paper: HH PT.

                Article
                09-PLCB-RA-0125R4
                10.1371/journal.pcbi.1000552
                2768585
                19888473
                fa7ad3a1-2430-4d4c-bea7-7d1420f53948
                Hegyi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 5 February 2009
                : 30 September 2009
                Page count
                Pages: 10
                Categories
                Research Article
                Biochemistry/Bioinformatics
                Biochemistry/Protein Folding
                Biophysics/Protein Folding
                Biophysics/Structural Genomics
                Computational Biology/Alternative Splicing
                Computational Biology/Comparative Sequence Analysis
                Computational Biology/Macromolecular Structure Analysis
                Computational Biology/Protein Structure Prediction
                Genetics and Genomics/Bioinformatics
                Genetics and Genomics/Cancer Genetics
                Molecular Biology/Bioinformatics
                Oncology
                Oncology/Hematological Malignancies
                Oncology/Myeloproliferative Disorders, including Chronic Myeloid Leukemia

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article