68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Identification of the Toxic Compounds in Camellia oleifera Honey and Pollen to Honey Bees ( Apis mellifera)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="first" id="d2535876e101">Identifying the components of Camellia oleifera honey and pollen and conducting corresponding toxicological tests are essential to revealing the mechanism of Camellia oleifera toxicity to honey bees. In this research, we investigated the saccharides and alkaloids in honey, nectar, and pollen from Camellia oleifera, which were compared with honey, nectar, and pollen from Brassica napus, a widely planted flowering plant. The result showed that melibiose, manninotriose, raffinose, stachyose, and lower amounts of santonin and caffeine were found in Camellia oleifera nectar, pollen, and honey but not in B. napus nectar, pollen, and honey. Toxicological experiments indicated that manninotriose, raffinose, and stachyose in Camellia oleifera honey are toxic to bees, while alkaloids in Camellia oleifera pollen are not toxic to honey bees. The toxicity mechanism of oligosaccharides revealed by temporal metabolic profiling is that oligosaccharides cannot be further digested by honey bees and thus get accumulated in honey bees, disturbing the synthesis and metabolism of trehalose, ultimately causing honey bee mortality. </p>

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Agricultural intensification and climate change are rapidly decreasing insect biodiversity

          Major declines in insect biomass and diversity, reviewed here, have become obvious and well documented since the end of World War II. Here, we conclude that the spread and intensification of agriculture during the past half century is directly related to these losses. In addition, many areas, including tropical mountains, are suffering serious losses because of climate change as well. Crops currently occupy about 11% of the world’s land surface, with active grazing taking place over an additional 30%. The industrialization of agriculture during the second half of the 20th century involved farming on greatly expanded scales, monoculturing, the application of increasing amounts of pesticides and fertilizers, and the elimination of interspersed hedgerows and other wildlife habitat fragments, all practices that are destructive to insect and other biodiversity in and near the fields. Some of the insects that we are destroying, including pollinators and predators of crop pests, are directly beneficial to the crops. In the tropics generally, natural vegetation is being destroyed rapidly and often replaced with export crops such as oil palm and soybeans. To mitigate the effects of the Sixth Mass Extinction event that we have caused and are experiencing now, the following will be necessary: a stable (and almost certainly lower) human population, sustainable levels of consumption, and social justice that empowers the less wealthy people and nations of the world, where the vast majority of us live, will be necessary.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Significance of galactinol and raffinose family oligosaccharide synthesis in plants

            Abiotic stress induces differential expression of genes responsible for the synthesis of raffinose family of oligosaccharides (RFOs) in plants. RFOs are described as the most widespread D-galactose containing oligosaccharides in higher plants. Biosynthesis of RFOs begin with the activity of galactinol synthase (GolS; EC 2.4.1.123), a GT8 family glycosyltransferase that galactosylates myo-inositol to produce galactinol. Raffinose and the subsequent higher molecular weight RFOs (Stachyose, Verbascose, and Ajugose) are synthesized from sucrose by the subsequent addition of activated galactose moieties donated by Galactinol. Interestingly, GolS, the key enzyme of this pathway is functional only in the flowering plants. It is thus assumed that RFO synthesis is a specialized metabolic event in higher plants; although it is not known whether lower plant groups synthesize any galactinol or RFOs. In higher plants, several functional importance of RFOs have been reported, e.g., RFOs protect the embryo from maturation associated desiccation, are predominant transport carbohydrates in some plant families, act as signaling molecule following pathogen attack and wounding and accumulate in vegetative tissues in response to a range of abiotic stresses. However, the loss-of-function mutants reported so far fail to show any perturbation in those biological functions. The role of RFOs in biotic and abiotic stress is therefore still in debate and their specificity and related components remains to be demonstrated. The present review discusses the biology and stress-linked regulation of this less studied extension of inositol metabolic pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Caffeine in floral nectar enhances a pollinator's memory of reward.

              Plant defense compounds occur in floral nectar, but their ecological role is not well understood. We provide evidence that plant compounds pharmacologically alter pollinator behavior by enhancing their memory of reward. Honeybees rewarded with caffeine, which occurs naturally in nectar of Coffea and Citrus species, were three times as likely to remember a learned floral scent as were honeybees rewarded with sucrose alone. Caffeine potentiated responses of mushroom body neurons involved in olfactory learning and memory by acting as an adenosine receptor antagonist. Caffeine concentrations in nectar did not exceed the bees' bitter taste threshold, implying that pollinators impose selection for nectar that is pharmacologically active but not repellent. By using a drug to enhance memories of reward, plants secure pollinator fidelity and improve reproductive success.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Agricultural and Food Chemistry
                J. Agric. Food Chem.
                American Chemical Society (ACS)
                0021-8561
                1520-5118
                October 19 2022
                October 10 2022
                October 19 2022
                : 70
                : 41
                : 13176-13185
                Affiliations
                [1 ]Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
                Article
                10.1021/acs.jafc.2c04950
                36214176
                fa81b949-d4fc-49fb-8a98-e351617faf2f
                © 2022

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article