36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protein Phosphatase 2A Controls Ethylene Biosynthesis by Differentially Regulating the Turnover of ACC Synthase Isoforms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gaseous hormone ethylene is one of the master regulators of development and physiology throughout the plant life cycle. Ethylene biosynthesis is stringently regulated to permit maintenance of low levels during most phases of vegetative growth but to allow for rapid peaks of high production at developmental transitions and under stress conditions. In most tissues ethylene is a negative regulator of cell expansion, thus low basal levels of ethylene biosynthesis in dark-grown seedlings are critical for optimal cell expansion during early seedling development. The committed steps in ethylene biosynthesis are performed by the enzymes 1-aminocyclopropane 1-carboxylate synthase (ACS) and 1-aminocyclopropane 1-carboxylate oxidase (ACO). The abundance of different ACS enzymes is tightly regulated both by transcriptional control and by post-translational modifications and proteasome-mediated degradation. Here we show that specific ACS isozymes are targets for regulation by protein phosphatase 2A (PP2A) during Arabidopsis thaliana seedling growth and that reduced PP2A function causes increased ACS activity in the roots curl in 1-N-naphthylphthalamic acid 1 ( rcn1) mutant. Genetic analysis reveals that ethylene overproduction in PP2A-deficient plants requires ACS2 and ACS6, genes that encode ACS proteins known to be stabilized by phosphorylation, and proteolytic turnover of the ACS6 protein is retarded when PP2A activity is reduced. We find that PP2A and ACS6 proteins associate in seedlings and that RCN1-containing PP2A complexes specifically dephosphorylate a C-terminal ACS6 phosphopeptide. These results suggest that PP2A-dependent destabilization requires RCN1-dependent dephosphorylation of the ACS6 C-terminus. Surprisingly, rcn1 plants exhibit decreased accumulation of the ACS5 protein, suggesting that a regulatory phosphorylation event leads to ACS5 destabilization. Our data provide new insight into the circuitry that ensures dynamic control of ethylene synthesis during plant development, showing that PP2A mediates a finely tuned regulation of overall ethylene production by differentially affecting the stability of specific classes of ACS enzymes.

          Author Summary

          Like animals, plants produce a number of substances that regulate growth and coordinate developmental transitions and responses to environmental signals. Ethylene gas is one such regulator of the plant life cycle, playing important roles in fruit ripening, pathogen defenses, and the regulation of cell expansion. Because overall plant form is determined largely by the degree and directionality of cell expansion, ethylene is a crucial regulator of morphology, and ethylene production must be maintained at low levels during phases of rapid cell expansion, such as early seedling growth. Recent work has identified molecular mechanisms that target ethylene biosynthetic enzymes for proteolytic degradation; this degradation plays a key role in controlling ethylene production. Here we exploit the molecular genetic resources available in the Arabidopsis thaliana system to identify a highly conserved protein complex that dephosphorylates target proteins as a new component of the mechanism that regulates degradation of ethylene-producing enzymes. Our findings show that protein phosphatase 2A plays a nuanced role in this regulatory circuit, with both positive and negative inputs into the stability of specific proteins that drive ethylene biosynthesis. This work enhances our understanding of the mechanisms that enforce adaptive levels of hormone production in plants.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          The ethylene signaling pathway: new insights.

          During the past decade, molecular genetic studies on the reference plant Arabidopsis have established a largely linear signal transduction pathway for the response to ethylene gas. The biochemical modes of action of many of the signaling components are still unresolved. During the past year, however, progress in several areas has been made on several fronts. The different approaches used have included a functional study of the activity of the receptor His kinase, the determination of the ethylene receptor signaling complex at the endoplasmic reticulum and of the regulation of CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) activity by these receptors, the identification of a unique MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascade, the cloning and characterization of numerous ETHYLENE INSENSITIVE3 (EIN3)/EIN3-like (EIL) transcription factors from many plant species, and the integration of the ethylene and jasmonate response pathways via the ETHYLENE RESPONSE FACTOR (ERF) family of transcription factors. The elucidation of the biochemical mechanisms of ethylene signal transduction and the identification of new components in the ethylene response pathway in Arabidopsis are providing a framework for understanding how all plants sense and respond to ethylene.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Ethylene biosynthesis and signaling networks.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana.

              Ethylene (C(2)H(4)) is a unique plant-signaling molecule that regulates numerous developmental processes. The key enzyme in the two-step biosynthetic pathway of ethylene is 1-aminocyclopropane-1-carboxylate synthase (ACS), which catalyzes the conversion of S-adenosylmethionine (AdoMet) to ACC, the precursor of ethylene. To understand the function of this important enzyme, we analyzed the entire family of nine ACS isoforms (ACS1, ACS2, ACS4-9, and ACS11) encoded in the Arabidopsis genome. Our analysis reveals that members of this protein family share an essential function, because individual ACS genes are not essential for Arabidopsis viability, whereas elimination of the entire gene family results in embryonic lethality. Phenotypic characterization of single and multiple mutants unmasks unique but overlapping functions of the various ACS members in plant developmental events, including multiple growth characteristics, flowering time, response to gravity, disease resistance, and ethylene production. Ethylene acts as a repressor of flowering by regulating the transcription of the FLOWERING LOCUS C. Each single and high order mutant has a characteristic molecular phenotype with unique and overlapping gene expression patterns. The expression of several genes involved in light perception and signaling is altered in the high order mutants. These results, together with the in planta ACS interaction map, suggest that ethylene-mediated processes are orchestrated by a combinatorial interplay among ACS isoforms that determines the relative ratio of homo- and heterodimers (active or inactive) in a spatial and temporal manner. These subunit isoforms comprise a combinatorial code that is a central regulator of ethylene production during plant development. The lethality of the null ACS mutant contrasts with the viability of null mutations in key components of the ethylene signaling apparatus, strongly supporting the view that ACC, the precursor of ethylene, is a primary regulator of plant growth and development.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                April 2011
                April 2011
                21 April 2011
                : 7
                : 4
                : e1001370
                Affiliations
                [1 ]Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
                [2 ]Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
                The Salk Institute for Biological Studies, United States of America
                Author notes

                Conceived and designed the experiments: KRS GMY JJK AD. Performed the experiments: KRS GMY. Analyzed the data: KRS GMY JJK AD. Wrote the paper: KRS AD.

                Article
                10-PLGE-RA-4209R3
                10.1371/journal.pgen.1001370
                3080859
                21533019
                fa85b792-9ee3-4c0e-8051-87b0d06fd794
                Skottke et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 September 2010
                : 10 March 2011
                Page count
                Pages: 13
                Categories
                Research Article
                Genetics and Genomics/Plant Genetics and Gene Expression
                Plant Biology/Plant Biochemistry and Physiology
                Plant Biology/Plant Growth and Development

                Genetics
                Genetics

                Comments

                Comment on this article