43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Molecular methods for the assessment of bacterial viability

      ,
      Journal of Microbiological Methods
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A significant number of pathogenic microorganisms can be found in environmental reservoirs (air, water, soil). It is important to assess the viability status of these organisms to determine whether they pose a threat to public health. Classical methods for determining viability are time consuming. Hence, molecular methods have been developed to address this problem. Molecular methods offer speed, sensitivity and specificity. Both DNA and RNA have been analysed using molecular amplification methods such as polymerase chain reaction (PCR), reverse transcriptase PCR (RT-PCR) and nucleic acid sequence-based amplification (NASBA). However, due to the variable persistence of nucleic acids in cells post-death, the correlation between presence of DNA and RNA and viability is not clear-cut. Similarly, the choice of target and sensitivity of the method can significantly affect the validity of the viability assay. This review assesses the molecular methods currently available and evaluates their ability to assess cell viability with emphasis on environmental pathogens.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          16S rRNA sequences reveal numerous uncultured microorganisms in a natural community.

          Microbiologists have been constrained in their efforts to describe the compositions of natural microbial communities using traditional methods. Few microorganisms have sufficiently distinctive morphology to be recognized by microscopy. Culture-dependent methods are biased, as a microorganism can be cultivated only after its physiological niche is perceived and duplicated experimentally. It is therefore widely believed that fewer than 20% of the extant microorganisms have been discovered, and that culture methods are inadequate for studying microbial community composition. In view of the physiological and phylogenetic diversity among microorganisms, speculation that 80% or more of microbes remain undiscovered raises the question of how well we know the Earth's biota and its biochemical potential. We have performed a culture-independent analysis of the composition of a well-studied hot spring microbial community, using a common but distinctive cellular component, 16S ribosomal RNA. Our results confirm speculations about the diversity of uncultured microorganisms it contains.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A tentative direct microscopic method for counting living marine bacteria.

            Yeast extract (0.025%) and nalidixic acid (0.002%) were added to seawater samples and the samples were incubated for 6 h at 20 degrees C in the dark. Under these conditions, bacterial cells did not divide but grew to form elongated cells that are easily recognized by a direct microscopic method and epifluorescent microscopic technique. The number of cells thus obtained is proposed as a direct cound of viable bacterial cells (DVC). With open ocean samples, DVC was higher than 'viable' plate counts by up to three orders of magnitude and lower than the direct counts by about one order.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Detection and enumeration of coliforms in drinking water: current methods and emerging approaches.

              The coliform group has been used extensively as an indicator of water quality and has historically led to the public health protection concept. The aim of this review is to examine methods currently in use or which can be proposed for the monitoring of coliforms in drinking water. Actually, the need for more rapid, sensitive and specific tests is essential in the water industry. Routine and widely accepted techniques are discussed, as are methods which have emerged from recent research developments.Approved traditional methods for coliform detection include the multiple-tube fermentation (MTF) technique and the membrane filter (MF) technique using different specific media and incubation conditions. These methods have limitations, however, such as duration of incubation, antagonistic organism interference, lack of specificity and poor detection of slow-growing or viable but non-culturable (VBNC) microorganisms. Nowadays, the simple and inexpensive membrane filter technique is the most widely used method for routine enumeration of coliforms in drinking water.The detection of coliforms based on specific enzymatic activity has improved the sensitivity of these methods. The enzymes beta-D galactosidase and beta-D glucuronidase are widely used for the detection and enumeration of total coliforms and Escherichia coli, respectively. Many chromogenic and fluorogenic substrates exist for the specific detection of these enzymatic activities, and various commercial tests based on these substrates are available. Numerous comparisons have shown these tests may be a suitable alternative to the classical techniques. They are, however, more expensive, and the incubation time, even though reduced, remains too long for same-day results. More sophisticated analytical tools such as solid phase cytometry can be employed to decrease the time needed for the detection of bacterial enzymatic activities, with a low detection threshold. Detection of coliforms by molecular methods is also proposed, as these methods allow for very specific and rapid detection without the need for a cultivation step. Three molecular-based methods are evaluated here: the immunological, polymerase chain reaction (PCR) and in-situ hybridization (ISH) techniques. In the immunological approach, various antibodies against coliform bacteria have been produced, but the application of this technique often showed low antibody specificity. PCR can be used to detect coliform bacteria by means of signal amplification: DNA sequence coding for the lacZ gene (beta-galactosidase gene) and the uidA gene (beta-D glucuronidase gene) has been used to detect total coliforms and E. coli, respectively. However, quantification with PCR is still lacking in precision and necessitates extensive laboratory work. The FISH technique involves the use of oligonucleotide probes to detect complementary sequences inside specific cells. Oligonucleotide probes designed specifically for regions of the 16S RNA molecules of Enterobacteriaceae can be used for microbiological quality control of drinking water samples. FISH should be an interesting viable alternative to the conventional culture methods for the detection of coliforms in drinking water, as it provides quantitative data in a fairly short period of time (6 to 8 h), but still requires research effort. This review shows that even though many innovative bacterial detection methods have been developed, few have the potential for becoming a standardized method for the detection of coliforms in drinking water samples.
                Bookmark

                Author and article information

                Journal
                Journal of Microbiological Methods
                Journal of Microbiological Methods
                Elsevier BV
                01677012
                May 2003
                May 2003
                : 53
                : 2
                : 175-183
                Article
                10.1016/S0167-7012(03)00025-3
                12654489
                fa932ce8-c91a-487e-ab86-eeb5d1843ee3
                © 2003

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article