54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Site-Specific Transformation of Drosophila via ϕC31 Integrase-Mediated Cassette Exchange

      , ,
      Genetics
      Genetics Society of America

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Position effects can complicate transgene analyses. This is especially true when comparing transgenes that have inserted randomly into different genomic positions and are therefore subject to varying position effects. Here, we introduce a method for the precise targeting of transgenic constructs to predetermined genomic sites in Drosophila using the C31 integrase system in conjunction with recombinase-mediated cassette exchange (RMCE). We demonstrate the feasibility of this system using two donor cassettes, one carrying the yellow gene and the other carrying GFP. At all four genomic sites tested, we observed exchange of donor cassettes with an integrated target cassette carrying the mini-white gene. Furthermore, because RMCE-mediated integration of the donor cassette is necessarily accompanied by loss of the target cassette, we were able to identify integrants simply by the loss of mini-white eye color. Importantly, this feature of the technology will permit integration of unmarked constructs into Drosophila, even those lacking functional genes. Thus, C31 integrase-mediated RMCE should greatly facilitate transgene analysis as well as permit new experimental designs.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Transposition of cloned P elements into Drosophila germ line chromosomes.

          Recombinant DNA carrying the 3-kilobase transposable element was injected into Drosophila embryos of a strain that lacked such elements. Under optimum conditions, half of the surviving embryos showed evidence of P element-induced mutations in a fraction of their progeny. Direct analysis of the DNA of strains derived from such flies showed them to contain from one to five intact 3-kilobase P elements located at a wide variety of chromosomal sites. DNA sequences located outside the P element on the injected DNA were not transferred. Thus P elements can efficiently and selectively transpose from extrachromosomal DNA to the DNA of germ line chromosomes in Drosophila embryos. These observations provide the basis for efficient DNA-mediated gene transfer in Drosophila.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster.

            We describe a collection of P-element insertions that have considerable utility for generating custom chromosomal aberrations in Drosophila melanogaster. We have mobilized a pair of engineered P elements, p[RS3] and p[RS5], to collect 3243 lines unambiguously mapped to the Drosophila genome sequence. The collection contains, on average, an element every 35 kb. We demonstrate the utility of the collection for generating custom chromosomal deletions that have their end points mapped, with base-pair resolution, to the genome sequence. The collection was generated in an isogenic strain, thus affording a uniform background for screens where sensitivity to genetic background is high. The entire collection, along with a computational and genetic toolbox for designing and generating custom deletions, is publicly available. Using the collection it is theoretically possible to generate >12,000 deletions between 1 bp and 1 Mb in size by simple eye color selection. In addition, a further 37,000 deletions, selectable by molecular screening, may be generated. We are now using the collection to generate a second-generation deficiency kit that is precisely mapped to the genome sequence.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ends-out, or replacement, gene targeting in Drosophila.

              Ends-in and ends-out refer to the two arrangements of donor DNA that can be used for gene targeting. Both have been used for targeted mutagenesis, but require donors of differing design. Ends-out targeting is more frequently used in mice and yeast because it gives a straightforward route to replace or delete a target locus. Although ends-in targeting has been successful in Drosophila, an attempt at ends-out targeting failed. To test whether ends-out targeting could be used in Drosophila, we applied two strategies for ends-out gene replacement at the endogenous yellow (y) locus in Drosophila. First, a mutant allele was rescued by replacement with an 8-kb y(+) DNA fragment at a rate of approximately 1/800 gametes. Second, a wild-type gene was disrupted by the insertion of a marker gene in exon 1 at a rate of approximately 1/380 gametes. The I-SceI endonuclease component alone is not sufficient for targeting: the FLP recombinase is also needed to generate the extrachromosomal donor. When both components are used we find that ends-out targeting can be approximately as efficient as ends-in targeting, and is likely to be generally useful for Drosophila gene targeting.
                Bookmark

                Author and article information

                Journal
                Genetics
                Genetics
                Genetics Society of America
                0016-6731
                1943-2631
                June 21 2006
                June 2006
                June 2006
                March 17 2006
                : 173
                : 2
                : 769-777
                Article
                10.1534/genetics.106.056945
                1526508
                16547094
                fa9da229-4d9d-45aa-abd4-2b10f17db258
                © 2006
                History

                Comments

                Comment on this article