19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrated hepatic transcriptional and serum metabolic studies on circulating nutrient metabolism in diurnal laying hens

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of the study was to see the diurnal variation of nutrients metabolism and their regulation under the management of large-scaled production. The hepatic transcriptional and serum metabolic studies on circulating nutrient metabolism were investigated in diurnal laying hens. Liver and blood were collected from 36 hens that were slaughtered at 3:30, 7:30, 11:30, 15:30, 19:30, and 23:30 (n = 6), respectively. The serum amino acid, fatty acid and glucose levels, as well as the hepatic transcriptome were analyzed. The results revealed that the circadian clock genes such as Bmal1, Clock, Per1, and Cry2 displayed circadian rhythms in hen livers. The genes related to circulating nutrient transportation, lipogenesis, lipid catabolism, sterol metabolism, and oxidative/anti-oxidative systems also oscillated. However, the nadir of glucose was observed at 7:30 and peaked at 11:30 in the day. Amino acid levels peaked mainly at night, and most amino acids exhibited circadian rhythms based on CircWave analysis. With the exception of undecanoic acid (C11:0), myristoleic acid (C14:1), cis-11, 14-eicosenoic acid (C20:2), and (cis-4, 7, 10, 13, 16, 19-docosahexaenoic acid) C20:3N6 fatty acids, others peaked at 7:30 and 15:30. The results indicated that the hens required more glucose in the early morning. More proteins should be ingested late in the day, since protein catabolism occurred mostly at night. To remove the redundant fats and lipids, fewer should be ingested, especially during the night. All these results would help to design a more accurate nutrition schedule for improving the performance of laying hens in the future.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Coordinated transcription of key pathways in the mouse by the circadian clock.

          In mammals, circadian control of physiology and behavior is driven by a master pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. We have used gene expression profiling to identify cycling transcripts in the SCN and in the liver. Our analysis revealed approximately 650 cycling transcripts and showed that the majority of these were specific to either the SCN or the liver. Genetic and genomic analysis suggests that a relatively small number of output genes are directly regulated by core oscillator components. Major processes regulated by the SCN and liver were found to be under circadian regulation. Importantly, rate-limiting steps in these various pathways were key sites of circadian control, highlighting the fundamental role that circadian clocks play in cellular and organismal physiology.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            Nutrient Requirements of Poultry

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extensive and divergent circadian gene expression in liver and heart.

              Many mammalian peripheral tissues have circadian clocks; endogenous oscillators that generate transcriptional rhythms thought to be important for the daily timing of physiological processes. The extent of circadian gene regulation in peripheral tissues is unclear, and to what degree circadian regulation in different tissues involves common or specialized pathways is unknown. Here we report a comparative analysis of circadian gene expression in vivo in mouse liver and heart using oligonucleotide arrays representing 12,488 genes. We find that peripheral circadian gene regulation is extensive (> or = 8-10% of the genes expressed in each tissue), that the distributions of circadian phases in the two tissues are markedly different, and that very few genes show circadian regulation in both tissues. This specificity of circadian regulation cannot be accounted for by tissue-specific gene expression. Despite this divergence, the clock-regulated genes in liver and heart participate in overlapping, extremely diverse processes. A core set of 37 genes with similar circadian regulation in both tissues includes candidates for new clock genes and output genes, and it contains genes responsive to circulating factors with circadian or diurnal rhythms.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                26 December 2017
                7 December 2017
                : 8
                : 69
                : 113885-113894
                Affiliations
                1 Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Science, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China
                2 School of Food Science and Technology, State Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
                3 Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha, Hunan 410125, China
                Author notes
                Correspondence to: Wu Xin, wuxin@ 123456isa.ac.cn
                Article
                23032
                10.18632/oncotarget.23032
                5768371
                faa8893f-49b5-482e-a97b-e394001bb282
                Copyright: © 2017 Dan et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 26 July 2017
                : 30 October 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                circadian rhythm,laying hens,hepatic transcriptome,circulating nutrients

                Comments

                Comment on this article