+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reduction in Cadmium Exposure in the United States Population, 1988–2008: The Contribution of Declining Smoking Rates


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Background: Public health policies such as tobacco control, air pollution reduction, and hazardous waste remediation may have reduced cadmium exposure among U.S. adults. However, trends in urine cadmium, a marker of cumulative cadmium exposure, have not been evaluated.

          Objectives: We estimated the trends in urine cadmium concentrations in U.S. adults using data from the National Health and Nutrition Examination Surveys (NHANES) from 1988 to 2008. We also evaluated the impact of changes in the distribution of available cadmium determinants (age, sex, race, education, body mass index, smoking, and occupation) at the population level to explain cadmium trends.

          Methods: The study population included 19,759 adults ≥ 20 years of age with measures of urine cadmium and cadmium determinants.

          Results: Age-adjusted geometric means of urine cadmium concentrations were 0.36, 0.35, 0.27, 0.27, 0.28, 0.25, and 0.26 µg/g creatinine in 1988–1991, 1991–1994, 1999–2000, 2001–2002, 2003–2004, 2005–2006, and 2007–2008, respectively. The age, sex, and race/ethnicity-adjusted percent reduction in urine cadmium geometric means comparing 1999–2002 and 2003–2008 with 1988–1994 were 27.8% (95% confidence interval: 22.3%, 32.9%) and 34.3% (29.9%, 38.4%), respectively ( p-trend < 0.001), with reductions in all participant subgroups investigated. In never smokers, reductions in serum cotinine accounted for 15.6% of the observed reduction. In ever smokers, changes in smoking cessation, and cumulative and recent dose accounted for 17.1% of the observed reduction.

          Conclusions: Urine cadmium concentrations decreased markedly between 1988 and 2008. Declining smoking rates and changes in exposure to tobacco smoke may have played an important role in the decline of urine cadmium concentrations, benefiting both smokers and nonsmokers. Cadmium has been associated to several health outcomes in NHANES 1999–2008. Consequently, despite the observed decline, further reduction in cadmium exposure is needed.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Current status of cadmium as an environmental health problem.

          Cadmium is a toxic metal occurring in the environment naturally and as a pollutant emanating from industrial and agricultural sources. Food is the main source of cadmium intake in the non-smoking population. The bioavailability, retention and toxicity are affected by several factors including nutritional status such as low iron status. Cadmium is efficiently retained in the kidney (half-time 10-30 years) and the concentration is proportional to that in urine (U-Cd). Cadmium is nephrotoxic, initially causing kidney tubular damage. Cadmium can also cause bone damage, either via a direct effect on bone tissue or indirectly as a result of renal dysfunction. After prolonged and/or high exposure the tubular injury may progress to glomerular damage with decreased glomerular filtration rate, and eventually to renal failure. Furthermore, recent data also suggest increased cancer risks and increased mortality in environmentally exposed populations. Dose-response assessment using a variety of early markers of kidney damage has identified U-Cd points of departure for early kidney effects between 0.5 and 3 microg Cd/g creatinine, similar to the points of departure for effects on bone. It can be anticipated that a considerable proportion of the non-smoking adult population has urinary cadmium concentrations of 0.5 microg/g creatinine or higher in non-exposed areas. For smokers this proportion is considerably higher. This implies no margin of safety between the point of departure and the exposure levels in the general population. Therefore, measures should be put in place to reduce exposure to a minimum, and the tolerably daily intake should be set in accordance with recent findings.
            • Record: found
            • Abstract: found
            • Article: not found

            Gender differences in the disposition and toxicity of metals.

            There is increasing evidence that health effects of toxic metals differ in prevalence or are manifested differently in men and women. However, the database is small. The present work aims at evaluating gender differences in the health effects of cadmium, nickel, lead, mercury and arsenic. There is a markedly higher prevalence of nickel-induced allergy and hand eczema in women compared to men, mainly due to differences in exposure. Cadmium retention is generally higher in women than in men, and the severe cadmium-induced Itai-itai disease was mainly a woman's disease. Gender differences in susceptibility at lower exposure are uncertain, but recent data indicate that cadmium has estrogenic effects and affect female offspring. Men generally have higher blood lead levels than women. Lead accumulates in bone and increased endogenous lead exposure has been demonstrated during periods of increased bone turnover, particularly in women in pregnancy and menopause. Lead and mercury, in the form of mercury vapor and methylmercury, are easily transferred from the pregnant women to the fetus. Recent data indicate that boys are more susceptible to neurotoxic effects of lead and methylmercury following exposure early in life, while experimental data suggest that females are more susceptible to immunotoxic effects of lead. Certain gender differences in the biotransformation of arsenic by methylation have been reported, and men seem to be more affected by arsenic-related skin effect than women. Experimental studies indicate major gender differences in arsenic-induced cancer. Obviously, research on gender-related differences in health effects caused by metals needs considerable more focus in the future.
              • Record: found
              • Abstract: found
              • Article: not found

              How plants cope with cadmium: staking all on metabolism and gene expression.

              Environmental pollution is one of the major problems for human health. Toxic heavy metals are normally present as soil constituents or can also be spread out in the environment by human activity and agricultural techniques. Soil contamination by heavy metals as cadmium, highlights two main aspects: on one side they interfere with the life cycle of plants and therefore reduce crop yields, and on the other hand, once adsorbed and accumulated into the plant tissues, they enter the food chain poisoning animals and humans. Considering this point of view, understanding the mechanism by which plants handle heavy metal exposure, in particular cadmium stress, is a primary goal of plant-biotechnology research or plant breeders whose aim is to create plants that are able to recover high amounts of heavy metals, which can be used for phytoremediation, or identify crop varieties that do not accumulate toxic metal in grains or fruits. In this review we focus on the main symptoms of cadmium toxicity both on root apparatus and shoots. We elucidate the mechanisms that plants activate to prevent absorption or to detoxify toxic metal ions, such as synthesis of phytochelatins, metallothioneins and enzymes involved in stress response. Finally we consider new plant-biotechnology applications that can be applied for phytoremediation.

                Author and article information

                Environ Health Perspect
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                07 November 2011
                February 2012
                : 120
                : 2
                : 204-209
                [1 ]Department of Epidemiology, and
                [2 ]Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
                [3 ]Department of Epidemiology, Imaging and Atherothrombosis, National Center for Cardiovascular Research, Madrid, Spain
                [4 ]Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
                [5 ]Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
                [6 ]Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
                [7 ]Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
                Author notes
                Address correspondence to M. Tellez-Plaza, Departments of Epidemiology and Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Room W7513D, Baltimore, MD 21205 USA. Telephone: (410) 502-4267. Fax: (410) 955-1811. E-mail: mtellez@ 123456jhsph.edu
                Copyright @ 2011

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                : 31 May 2011
                : 07 November 2011

                Public health
                trends,cigarette smoking,determinants,cadmium,nhanes
                Public health
                trends, cigarette smoking, determinants, cadmium, nhanes


                Comment on this article