39
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Niacin Modulates Pro-inflammatory Cytokine Secretion. A Potential Mechanism Involved in its Anti-atherosclerotic Effect

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pathogenesis of atherosclerosis includes the assignment of a critical role to cells of the monocyte/macrophage lineage and to pro-inflammatory cytokines. Niacin is known to improve lipid metabolism and to produce beneficial modification of cardiovascular risk factors. The aim of this work was to investigate if Niacin is able to modulate pro-inflammatory cytokine production in macrophages in a murine model of atherosclerosis. For this purpose C57Bl/6J mice fed with atherogenic diet (AGD) or with conventional chow diet were used. The AGD group showed an increase in body weight and in total plasma cholesterol, with no differences in triglyceride or HDL levels. Lesions in arterial walls were observed. The characterization of Niacin receptor showed an increase in the receptor number of macrophages from the AGD group. Macrophages from control and AGD animals treated in vitro with an inflammatory stimulus showed elevated levels of IL-6, IL-1 and TNF-α, that were even higher in macrophages from AGD mice. Niacin was able to decrease the production of pro-inflammatory cytokines in stimulated macrophages. Similar effect of Niacin was observed in an in vivo model of inflammation. These results show an attenuating inflammatory mechanism for this therapeutic agent and would point out its potential action in plaque stabilization and in the prevention of atherosclerosis progression. Furthermore, the present results provide the basis for future studies on the potential contribution of Niacin to anti-inflammatory therapies.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect.

          Nicotinic acid (niacin), a vitamin of the B complex, has been used for almost 50 years as a lipid-lowering drug. The pharmacological effect of nicotinic acid requires doses that are much higher than those provided by a normal diet. Its primary action is to decrease lipolysis in adipose tissue by inhibiting hormone-sensitive triglyceride lipase. This anti-lipolytic effect of nicotinic acid involves the inhibition of cyclic adenosine monophosphate (cAMP) accumulation in adipose tissue through a G(i)-protein-mediated inhibition of adenylyl cyclase. A G-protein-coupled receptor for nicotinic acid has been proposed in adipocytes. Here, we show that the orphan G-protein-coupled receptor, 'protein upregulated in macrophages by interferon-gamma' (mouse PUMA-G, human HM74), is highly expressed in adipose tissue and is a nicotinic acid receptor. Binding of nicotinic acid to PUMA-G or HM74 results in a G(i)-mediated decrease in cAMP levels. In mice lacking PUMA-G, the nicotinic acid-induced decrease in free fatty acid (FFA) and triglyceride plasma levels was abrogated, indicating that PUMA-G mediates the anti-lipolytic and lipid-lowering effects of nicotinic acid in vivo. The identification of the nicotinic acid receptor may be useful in the development of new drugs to treat dyslipidemia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Innate immunity and inflammation in ageing: a key for understanding age-related diseases

            The process of maintaining life for the individual is a constant struggle to preserve his/her integrity. This can come at a price when immunity is involved, namely systemic inflammation. Inflammation is not per se a negative phenomenon: it is the response of the immune system to the invasion of viruses or bacteria and other pathogens. During evolution the human organism was set to live 40 or 50 years; today, however, the immune system must remain active for much a longer time. This very long activity leads to a chronic inflammation that slowly but inexorably damages one or several organs: this is a typical phenomenon linked to ageing and it is considered the major risk factor for age-related chronic diseases. Alzheimer's disease, atherosclerosis, diabetes and even sarcopenia and cancer, just to mention a few – have an important inflammatory component, though disease progression seems also dependent on the genetic background of individuals. Emerging evidence suggests that pro-inflammatory genotypes are related to unsuccessful ageing, and, reciprocally, controlling inflammatory status may allow a better chance of successful ageing. In other words, age-related diseases are "the price we pay" for a life-long active immune system: this system has also the potential to harm us later, as its fine tuning becomes compromised. Our immune system has evolved to control pathogens, so pro-inflammatory responses are likely to be evolutionarily programmed to resist fatal infections with pathogens aggressively. Thus, inflammatory genotypes are an important and necessary part of the normal host responses to pathogens in early life, but the overproduction of inflammatory molecules might also cause immune-related inflammatory diseases and eventually death later. Therefore, low responder genotypes involved in regulation of innate defence mechanisms, might better control inflammatory responses and age-related disease development, resulting in an increased chance of long life survival in a "permissive" environment with reduced pathogen load, medical care and increased quality of life.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular identification of high and low affinity receptors for nicotinic acid.

              Nicotinic acid has been used clinically for over 40 years in the treatment of dyslipidemia producing a desirable normalization of a range of cardiovascular risk factors, including a marked elevation of high density lipoprotein and a reduction in mortality. The precise mechanism of action of nicotinic acid is unknown, although it is believed that activation of a G(i)-G protein-coupled receptor may contribute. Utilizing available information on the tissue distribution of nicotinic acid receptors, we identified candidate orphan receptors. The selected orphan receptors were screened for responses to nicotinic acid, in an assay for activation of G(i)-G proteins. Here we describe the identification of the G protein-coupled receptor HM74 as a low affinity receptor for nicotinic acid. We then describe the subsequent identification of HM74A in follow-up bioinformatics searches and demonstrate that it acts as a high affinity receptor for nicotinic acid and other compounds with related pharmacology. The discovery of HM74A as a molecular target for nicotinic acid may facilitate the discovery of superior drug molecules to treat dyslipidemia.
                Bookmark

                Author and article information

                Journal
                Open Cardiovasc Med J
                Open Cardiovasc Med J
                TOCMJ
                The Open Cardiovascular Medicine Journal
                Bentham Open
                1874-1924
                20 September 2013
                2013
                : 7
                : 90-98
                Affiliations
                [a ]Primera Cátedra de Farmacología, Departamento de Farmacología Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina
                [b ]Centro de Estudios Farmacológicos y Botánicos (CEFYBO)-CONICET-UBA, Argentina
                [c ]Instituto de Investigaciones Cardiológicas ININCA-CONICET–UBA, Argentina
                Author notes
                [* ]Address correspondence to this author at the Paraguay 2155 piso 15, CABA, Buenos Aires, CP:1121ABG Argentina.; Tel: +54-11-5950-9500; Ext: 2206; Fax: +54-11-4962-4431; Ext: 106; E-mails: amgenaro@ 123456yahoo.com.ar; miriamrwald@ 123456yahoo.com.ar
                Article
                TOCMJ-7-90
                10.2174/1874192401307010090
                3805984
                24155799
                facfaefe-7d6b-4c4b-aa77-721cc22295a3
                © Lipszyc et al.; Licensee Bentham Open.

                This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 15 April 2013
                : 18 May 2013
                : 20 May 2013
                Categories
                Article

                Cardiovascular Medicine
                atherosclerosis,inflammation,macrophages,niacin,nicotinic acid receptor,pro-inflammatory cytokine.

                Comments

                Comment on this article