20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aggressive fluid accumulation is associated with acute kidney injury and mortality in a cohort of patients with severe pneumonia caused by influenza A H1N1 virus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Fluid accumulation is associated with adverse outcomes such as acute kidney injury (AKI) in critically ill patients. This study aimed to describe the factors associated with AKI in individuals with influenza A H1N1 severe pneumonia, and explore the relation of fluid accumulation with AKI and mortality.

          Material and methods

          We reviewed medical records of individuals with influenza A H1N1 severe pneumonia and no history of chronic kidney disease, attending a national referral center for respiratory diseases between November 2014 and May 2015. Demographic information, risk factors for AKI, physiologic and laboratory data, outcomes and information on fluid intake and output were recorded. Categorical variables were compared using the chi-square test. Quantitative variables were compared using the Mann-Whitney test. Factors associated with AKI and mortality were identified by binary logistic regression. Linear models of fluid accumulation rates for individuals and groups were estimated using segmented linear regression.

          Results

          Of 60 patients studied, 43 developed AKI (71.6%). Male gender was protective for AKI (p = 0.019). AKI was associated with nephrotoxic drugs (p = 0.016); PEEP>10 cm H 2O on admission (p = 0.031); mortality (p = 0.037); and fluid accumulation ≥10% (fluid overload) at day 7 of hospitalization (p = 0.00026). Mortality was associated with older age (p = 0.009); nephrotoxic drugs (p = 0.034); and higher Pneumonia Severity Index score (112 vs. 76, p = 0.008) on admission. The Deceased-AKI group had a higher rate of fluid accumulation (expressed as ml/kg/body weight) than the Survivors-No AKI group during the study period of 7 days (Survivors-No AKI = 13.31 vs. Deceased-AKI = 22.76, p = 0.019). During the highest phase of fluid accumulation, the Survivors-No AKI group had a slower rate of fluid accumulation than the Survivors-AKI group (14.91 vs. 28.49, p = 0.001).

          Conclusions

          A high rate of fluid accumulation was associated with AKI and mortality. We support the approach of resuscitation in acute illness, with an early transition to neutral and then negative fluid balances.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score.

          To describe risk factors for the development of acute renal failure (ARF) in a population of intensive care unit (ICU) patients, and the association of ARF with multiple organ failure (MOF) and outcome using the sequential organ failure assessment (SOFA) score. Prospective, multicenter, observational cohort analysis. Forty ICUs in 16 countries. All patients admitted to one of the participating ICUs in May 1995, except those who stayed in the ICU for less than 48 h after uncomplicated surgery, were included. After the exclusion of 38 patients with a history of chronic renal failure requiring renal replacement therapy, a total of 1411 patients were studied. Of the patients, 348 (24.7%) developed ARF, as diagnosed by a serum creatinine of 300 micromol/l (3.5 mg/dl) or more and/or a urine output of less than 500 ml/day. The most important risk factors for the development of ARF present on admission were acute circulatory or respiratory failure; age more than 65 years, presence of infection, past history of chronic heart failure (CHF), lymphoma or leukemia, or cirrhosis. ARF patients developed MOF earlier than non-ARF patients (median 24 vs 48 h after ICU admission, p < 0.05). ARF patients older than 65 years with a past history of CHF or with any organ failure on admission were most likely to develop MOF. ICU mortality was 3 times higher in ARF than in other patients (42.8% vs 14.0%, p < 0.01). Oliguric ARF was an independent risk factor for overall mortality as determined by a multivariate regression analysis (OR = 1.59 [CI 95%: 1.23-2.06], p < 0.01). Infection increased the risk of death associated with all factors. Factors that increased the ICU mortality of ARF patients were a past history of hematologic malignancy, age more than 65 years, the number of failing organs on admission and the presence of acute cardiovascular failure. In ICU patients, the most important risk factors for ARF or mortality from ARF are often present on admission. During the ICU stay, other organ failures (especially cardiovascular) are important risk factors. Oliguric ARF was an independent risk factor for ICU mortality, and infection increased the contribution to mortality by other factors. The severity of circulatory shock was the most important factor influencing outcome in ARF patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Prognosis for long-term survival and renal recovery in critically ill patients with severe acute renal failure: a population-based study

            Introduction Severe acute renal failure (sARF) is associated with considerable morbidity, mortality and use of healthcare resources; however, its precise epidemiology and long-term outcomes have not been well described in a non-specified population. Methods Population-based surveillance was conducted among all adult residents of the Calgary Health Region (population 1 million) admitted to multidisciplinary and cardiovascular surgical intensive care units between May 1 1999 and April 30 2002. Clinical records were reviewed and outcome at 1 year was assessed. Results sARF occurred in 240 patients (11.0 per 100,000 population/year). Rates were highest in males and older patients (≥65 years of age). Risk factors for development of sARF included previous heart disease, stroke, pulmonary disease, diabetes mellitus, cancer, connective tissue disease, chronic renal dysfunction, and alcoholism. The annual mortality rate was 7.3 per 100,000 population with rates highest in males and those ≥65 years. The 28-day, 90-day, and 1-year case-fatality rates were 51%, 60%, and 64%, respectively. Increased Charlson co-morbidity index, presence of liver disease, higher APACHE II score, septic shock, and need for continuous renal replacement therapy were independently associated with death at 1 year. Renal recovery occurred in 78% (68/87) of survivors at 1 year. Conclusion sARF is common and males, older patients, and those with underlying medical conditions are at greatest risk. Although the majority of patients with sARF will die, most survivors will become independent from renal replacement therapy within a year.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fluid balance and acute kidney injury.

              Intravenous fluids are widely administered to patients who have, or are at risk of, acute kidney injury (AKI). However, deleterious consequences of overzealous fluid therapy are increasingly being recognized. Salt and water overload can predispose to organ dysfunction, impaired wound healing and nosocomial infection, particularly in patients with AKI, in whom fluid challenges are frequent and excretion is impaired. In this Review article, we discuss how interstitial edema can further delay renal recovery and why conservative fluid strategies are now being advocated. Applying these strategies in critical illness is challenging. Although volume resuscitation is needed to restore cardiac output, it often leads to tissue edema, thereby contributing to ongoing organ dysfunction. Conservative strategies of fluid management mandate a switch towards neutral balance and then negative balance once hemodynamic stabilization is achieved. In patients with AKI, this strategy might require renal replacement therapy to be given earlier than when more-liberal fluid management is used. However, hypovolemia and renal hypoperfusion can occur in patients with AKI if excessive fluid removal is pursued with diuretics or extracorporeal therapy. Thus, accurate assessment of fluid status and careful definition of targets are needed at all stages to improve clinical outcomes. A conservative strategy of fluid management was recently tested and found to be effective in a large, randomized, controlled trial in patients with acute lung injury. Similar randomized, controlled studies in patients with AKI now seem justified.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Methodology
                Role: Data curationRole: InvestigationRole: ValidationRole: Writing – original draft
                Role: Supervision
                Role: Formal analysis
                Role: VisualizationRole: Writing – review & editing
                Role: Software
                Role: Project administration
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                15 February 2018
                2018
                : 13
                : 2
                : e0192592
                Affiliations
                [1 ] Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
                [2 ] Servicio Clínico 5, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
                [3 ] Departamento de Epidemiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
                University of Sao Paulo Medical School, BRAZIL
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0001-7295-8240
                Article
                PONE-D-17-29430
                10.1371/journal.pone.0192592
                5813941
                29447205
                fad82a3f-888e-4639-aa6f-fe27bebbf653
                © 2018 Casas-Aparicio et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 8 August 2017
                : 28 January 2018
                Page count
                Figures: 3, Tables: 3, Pages: 14
                Funding
                Funded by: The author(s) received no specific funding for this work.
                The authors received no specific funding for this work.
                Categories
                Research Article
                Medicine and Health Sciences
                Infectious Diseases
                Viral Diseases
                Influenza
                Medicine and Health Sciences
                Pulmonology
                Pneumonia
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                Biology and life sciences
                Microbiology
                Medical microbiology
                Microbial pathogens
                Viral pathogens
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                Medicine and health sciences
                Pathology and laboratory medicine
                Pathogens
                Microbial pathogens
                Viral pathogens
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                Biology and life sciences
                Organisms
                Viruses
                Viral pathogens
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                Biology and Life Sciences
                Anatomy
                Renal System
                Kidneys
                Medicine and Health Sciences
                Anatomy
                Renal System
                Kidneys
                Biology and Life Sciences
                Zoology
                Animal Diseases
                Animal Influenza
                Swine Influenza
                Medicine and Health Sciences
                Infectious Diseases
                Zoonoses
                Swine Influenza
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                H1N1
                Biology and life sciences
                Microbiology
                Medical microbiology
                Microbial pathogens
                Viral pathogens
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                H1N1
                Medicine and health sciences
                Pathology and laboratory medicine
                Pathogens
                Microbial pathogens
                Viral pathogens
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                H1N1
                Biology and life sciences
                Organisms
                Viruses
                Viral pathogens
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                H1N1
                Biology and Life Sciences
                Physiology
                Physiological Parameters
                Body Weight
                Medicine and Health Sciences
                Physiology
                Physiological Parameters
                Body Weight
                Medicine and Health Sciences
                Nephrology
                Chronic Kidney Disease
                Custom metadata
                All relevant data are within the paper and its Supporting Information file.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article