10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      What triggers the rising of an intraspecific biodiversity hotspot? Hints from the agile frog

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hotspots of genetic diversity are regions of utmost importance for species survival and conservation, and their intimate link with the geographic location of glacial refugia has been well established. Nonetheless, the microevolutionary processes underlying the generation of hotspots in such regions have only recently become a fervent field of research. We investigated the phylogeographic and population genetic structure of the agile frog, Rana dalmatina, within its putative refugium in peninsular Italy. We found this region to harbour far more diversity, phylogeographic structure, and lineages of ancient origin than that by the rest of the species' range in Europe. This pattern appeared to be well explained by climate-driven microevolutionary processes that occurred during both glacial and interglacial epochs. Therefore, the inferred evolutionary history of R. dalmatina in Italy supports a view of glacial refugia as ‘factories' rather than as repositories of genetic diversity, with significant implications for conservation strategies for hotspots.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Arlequin (version 3.0): An integrated software package for population genetics data analysis

          Arlequin ver 3.0 is a software package integrating several basic and advanced methods for population genetics data analysis, like the computation of standard genetic diversity indices, the estimation of allele and haplotype frequencies, tests of departure from linkage equilibrium, departure from selective neutrality and demographic equilibrium, estimation or parameters from past population expansions, and thorough analyses of population subdivision under the AMOVA framework. Arlequin 3 introduces a completely new graphical interface written in C++, a more robust semantic analysis of input files, and two new methods: a Bayesian estimation of gametic phase from multi-locus genotypes, and an estimation of the parameters of an instantaneous spatial expansion from DNA sequence polymorphism. Arlequin can handle several data types like DNA sequences, microsatellite data, or standard multi-locus genotypes. A Windows version of the software is freely available on http://cmpg.unibe.ch/software/arlequin3.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conserving biodiversity under climate change: the rear edge matters.

            Modern climate change is producing poleward range shifts of numerous taxa, communities and ecosystems worldwide. The response of species to changing environments is likely to be determined largely by population responses at range margins. In contrast to the expanding edge, the low-latitude limit (rear edge) of species ranges remains understudied, and the critical importance of rear edge populations as long-term stores of species' genetic diversity and foci of speciation has been little acknowledged. We review recent findings from the fossil record, phylogeography and ecology to illustrate that rear edge populations are often disproportionately important for the survival and evolution of biota. Their ecological features, dynamics and conservation requirements differ from those of populations in other parts of the range, and some commonly recommended conservation practices might therefore be of little use or even counterproductive for rear edge populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation.

              We previously developed a cladistic approach to identify subsets of haplotypes defined by restriction endonuclease mapping or DNA sequencing that are associated with significant phenotypic deviations. Our approach was limited to segments of DNA in which little recombination occurs. In such cases, a cladogram can be constructed from the restriction site or sequence data that represents the evolutionary steps that interrelate the observed haplotypes. The cladogram is used to define a nested statistical design to identify mutational steps associated with significant phenotypic deviations. The central assumption behind this strategy is that any undetected mutation causing a phenotypic effect is embedded within the same evolutionary history that is represented by the cladogram. The power of this approach depends upon the confidence one has in the particular cladogram used to draw inferences. In this paper, we present a strategy for estimating the set of cladograms that are consistent with a particular sample of either restriction site or nucleotide sequence data and that includes the possibility of recombination. We first evaluate the limits of parsimony in constructing cladograms. Once these limits have been determined, we construct the set of parsimonious and nonparsimonious cladograms that is consistent with these limits. Our estimation procedure also identifies haplotypes that are candidates for being products of recombination. If recombination is extensive, our algorithm subdivides the DNA region into two or more subsections, each having little or no internal recombination. We apply this estimation procedure to three data sets to illustrate varying degrees of cladogram ambiguity and recombination.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                23 May 2014
                2014
                : 4
                : 5042
                Affiliations
                [1 ]Dipartimento di Scienze Ecologiche e Biologiche, Università della Tuscia. Viale dell'Università s.n.c. , I-01100 Viterbo, Italy
                Author notes
                Article
                srep05042
                10.1038/srep05042
                4031470
                24853644
                fadc890a-d08b-4c16-9157-7b8511ef15a4
                Copyright © 2014, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. The images in this article are included in the article's Creative Commons license, unless indicated otherwise in the image credit; if the image is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the image. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 27 August 2013
                : 30 April 2014
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article