46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GRMHD simulations of visibility amplitude variability for Event Horizon Telescope images of Sgr A*

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Synthesis imaging of the black hole in the center of the Milky Way, Sgr A*, with the Event Horizon Telescope (EHT) rests on the assumption of a stationary image. We explore the limitations of this assumption using high-cadence GRMHD simulations of Sgr A*. We employ analytic models that capture the basic characteristics of the images to understand the origin of the variability in the simulated visibility amplitudes. We find that, in all simulations, the visibility amplitudes for baselines oriented perpendicular to the spin axis of the black hole typically decrease smoothly over baseline lengths that are comparable to those of the EHT. On the other hand, the visibility amplitudes for baselines oriented parallel to the spin axis show significant structure with one or more minima. This suggests that fitting EHT observations with geometric models will lead to reasonably accurate determination of the orientation of the black-hole on the plane of the sky. However, in the disk-dominated models, the locations and depths of the minima in the visibility amplitudes depend primarily on the width and asymmetry of the crescent-like images and are highly variable. In the jet-dominated models, the locations of the minima are determined by the separation of the two image components but their depths depend primarily on the relative brightness of the two components and are also variable. This suggests that using time-independent models to infer additional black-hole parameters, such as the shadow size or the spin magnitude, will be severely affected by the variability of the accretion flow.

          Related collections

          Author and article information

          Journal
          2016-01-25
          2016-01-27
          Article
          1601.06799
          46d0d886-b34c-4d0e-b8e9-9b2021f3c3fa

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          11 pages, 14 figures, submitted to ApJ
          astro-ph.HE

          High energy astrophysical phenomena
          High energy astrophysical phenomena

          Comments

          Comment on this article