113
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Gosha-jinki-gan (a Herbal Complex) Corrects Abnormal Insulin Signaling

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previous studies have shown that the traditional herbal complex Gosha-jinki-gan (GJG) improves diabetic neuropathy and insulin resistance. The present study was undertaken to elucidate the molecular mechanisms related with the long-term effects of GJG administration on insulin action in vivo and the early steps of insulin signaling in skeletal muscle in streptozotocin (STZ) diabetes. Rats were randomized into five subgroups: (1) saline treated control, (2) GJG treated control, (3) 2-unit insulin + saline treated diabetic, (4) saline + GJG treated diabetic and (5) 2-unit insulin + GJG treated diabetic groups. After seven days of treatment, euglycemic clamp experiment at an insulin infusion rate of 6 mU/kg/min was performed in overnight fasted rats. Despite the 2-unit insulin treatment, the metabolic clearance rates of glucose (MCR, ml/kg/min) in diabetic rats were significantly lower compared with the controls (11.4 ± 1.0 vs 44.1 ± 1.5; P < 0.001), and were significantly improved by insulin combined with GJG or GJG alone (26 ± 3.2 and 24.6 ± 2.2, P < 0.01, respectively). The increased insulin receptor (IR)-β protein content in skeletal muscle of diabetic rats was not affected by insulin combined with GJG administration. However, the decreased insulin receptor substrate-1 (IRS-1) protein content was significantly improved by treatment with GJG. Additionally, the increased tyrosine phosphorylation levels of IR-β and IRS-1 were significantly inhibited in insulin combined with GJG treated diabetes. The present results suggest that the improvement of the impaired insulin sensitivity in STZ-diabetic rats by administration of GJG may be due, at least in part, to correction in the abnormal early steps of insulin signaling in skeletal muscle.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Pathogenesis of NIDDM. A balanced overview.

          Non-insulin-dependent diabetes mellitus (NIDDM) results from an imbalance between insulin sensitivity and insulin secretion. Both longitudinal and cross-sectional studies have demonstrated that the earliest detectable abnormality in NIDDM is an impairment in the body's ability to respond to insulin. Because the pancreas is able to appropriately augment its secretion of insulin to offset the insulin resistance, glucose tolerance remains normal. With time, however, the beta-cell fails to maintain its high rate of insulin secretion and the relative insulinopenia (i.e., relative to the degree of insulin resistance) leads to the development of impaired glucose tolerance and eventually overt diabetes mellitus. The cause of pancreatic "exhaustion" remains unknown but may be related to the effect of glucose toxicity in a genetically predisposed beta-cell. Information concerning the loss of first-phase insulin secretion, altered pulsatility of insulin release, and enhanced proinsulin-insulin secretory ratio is discussed as it pertains to altered beta-cell function in NIDDM. Insulin resistance in NIDDM involves both hepatic and peripheral, muscle, tissues. In the postabsorptive state hepatic glucose output is normal or increased, despite the presence of fasting hyperinsulinemia, whereas the efficiency of tissue glucose uptake is reduced. In response to both endogenously secreted or exogenously administered insulin, hepatic glucose production fails to suppress normally and muscle glucose uptake is diminished. The accelerated rate of hepatic glucose output is due entirely to augmented gluconeogenesis. In muscle many cellular defects in insulin action have been described including impaired insulin-receptor tyrosine kinase activity, diminished glucose transport, and reduced glycogen synthase and pyruvate dehydrogenase. The abnormalities account for disturbances in the two major intracellular pathways of glucose disposal, glycogen synthesis, and glucose oxidation. In the earliest stages of NIDDM, the major defect involves the inability of insulin to promote glucose uptake and storage as glycogen. Other potential mechanisms that have been put forward to explain the insulin resistance, include increased lipid oxidation, altered skeletal muscle capillary density/fiber type/blood flow, impaired insulin transport across the vascular endothelium, increased amylin, calcitonin gene-related peptide levels, and glucose toxicity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation.

            Phosphatidylinositol 3-kinase (PI 3-kinase) is stimulated by insulin and a variety of growth factors, but its exact role in signal transduction remains unclear. We have used a novel, highly specific inhibitor of PT 3-kinase to dissect the role of this enzyme in insulin action. Treatment of intact 3T3-L1 adipocytes with LY294002 produced a dose-dependent inhibition of insulin-stimulated PI 3-kinase (50% inhibitory concentration, 6 microM) with > 95% reduction in the levels of phosphatidylinositol-3,4,5-trisphosphate without changes in the levels of phosphatidylinositol-4-monophosphate or its derivatives. In parallel, there was a complete inhibition of insulin-stimulated phosphorylation and activation of pp70 S6 kinase. Inhibition of PI 3-kinase also effectively blocked insulin- and serum-stimulated DNA synthesis and insulin-stimulated glucose uptake by inhibiting translocation of GLUT 4 glucose transporters to the plasma membrane. By contrast, LY294002 had no effect on insulin stimulation of mitogen-activated protein kinase or pp90 S6 kinase. Thus, activation of PI 3-kinase plays a critical role in mammalian cells and is required for activation of pp70 S6 kinase and DNA synthesis and certain forms of intracellular vesicular trafficking but not mitogen-activated protein kinase or pp90 S6 kinase activation. These data suggest that PI 3-kinase is not only an important component but also a point of divergence in the insulin signaling network.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cinnamon extract (traditional herb) potentiates in vivo insulin-regulated glucose utilization via enhancing insulin signaling in rats.

              Cinnamon has been shown to potentiate the insulin effect through upregulation of the glucose uptake in cultured adipocytes. In the present study, we evaluated the effect of the cinnamon extract on the insulin action in awaked rats by the euglycemic clamp and further analyzed possible changes in insulin signaling occurred in skeletal muscle. The rats were divided into saline and cinnamon extract (30 and 300 mg/kg BW-doses: C30 and C300) oral administration groups. After 3-weeks, cinnamon extract treated rats showed a significantly higher glucose infusion rate (GIR) at 3 mU/kg per min insulin infusions compared with controls (118 and 146% of controls for C30 and C300, respectively). At 30 mU/kg per min insulin infusions, the GIR in C300 rats was increased 17% over controls. There were no significant differences in insulin receptor (IR)-beta, IR substrate (IRS)-1, and phosphatidylinositol (PI) 3-kinase protein content between C300 rats and controls. However, the skeletal muscle insulin-stimulated IR-beta and the IRS-1 tyrosine phosphorylation levels in C300 rats were 18 and 33% higher, respectively, added to 41% higher IRS-1/PI 3-kinase association. These results suggest that the cinnamon extract would improve insulin action via increasing glucose uptake in vivo, at least in part through enhancing the insulin-signaling pathway in skeletal muscle.
                Bookmark

                Author and article information

                Journal
                Evid Based Complement Alternat Med
                Evidence-based Complementary and Alternative Medicine
                Evidence-based Complementary and Alternative Medicine
                Oxford University Press
                1741-427X
                1741-4288
                December 2004
                21 July 2004
                : 1
                : 3
                : 269-276
                Affiliations
                1Department of Sports Medicine, Graduate School of Medicine, Nagoya University Nagoya, Japan
                2Research Center of Health, Physical Fitness and Sports, Nagoya University Nagoya, Japan
                3Department of Visual Neuroscience, Graduate School of Medicine, Nagoya University Nagoya, Japan
                Author notes
                *For reprints and all correspondence: Yuzo Sato and Bolin Qin, Research Center of Health, Physical Fitness and Sports, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan. Tel: +81-52-789-3949; FAX: +81-52-789-3957. E-mail: bolin@ 123456med.nagoya-u.ac.jp
                Article
                10.1093/ecam/neh028
                538504
                15841260
                fae23baf-2338-4e86-95d7-79ddc8f1adb2
                © 2004, the authors Evidenced-based Complementary and Alternative Medicine, Vol. 1, Issue 3 © Oxford University Press 2004; all rights reserved . The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated.
                History
                : 19 December 2003
                : 24 March 2004
                Categories
                Original Article

                Complementary & Alternative medicine
                irs-1,tyrosine-phosphorylation,insulin sensitivity,gosha-jinki-gan (gjg)

                Comments

                Comment on this article