32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Semiconducting materials for photoelectrochemical energy conversion

      ,
      Nature Reviews Materials
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts.

          Although sunlight-driven water splitting is a promising route to sustainable hydrogen fuel production, widespread implementation is hampered by the expense of the necessary photovoltaic and photoelectrochemical apparatus. Here, we describe a highly efficient and low-cost water-splitting cell combining a state-of-the-art solution-processed perovskite tandem solar cell and a bifunctional Earth-abundant catalyst. The catalyst electrode, a NiFe layered double hydroxide, exhibits high activity toward both the oxygen and hydrogen evolution reactions in alkaline electrolyte. The combination of the two yields a water-splitting photocurrent density of around 10 milliamperes per square centimeter, corresponding to a solar-to-hydrogen efficiency of 12.3%. Currently, the perovskite instability limits the cell lifetime.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Strong light-matter interactions in heterostructures of atomically thin films.

            The isolation of various two-dimensional (2D) materials, and the possibility to combine them in vertical stacks, has created a new paradigm in materials science: heterostructures based on 2D crystals. Such a concept has already proven fruitful for a number of electronic applications in the area of ultrathin and flexible devices. Here, we expand the range of such structures to photoactive ones by using semiconducting transition metal dichalcogenides (TMDCs)/graphene stacks. Van Hove singularities in the electronic density of states of TMDC guarantees enhanced light-matter interactions, leading to enhanced photon absorption and electron-hole creation (which are collected in transparent graphene electrodes). This allows development of extremely efficient flexible photovoltaic devices with photoresponsivity above 0.1 ampere per watt (corresponding to an external quantum efficiency of above 30%).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting.

              The increasing human need for clean and renewable energy has stimulated research in artificial photosynthesis, and in particular water photoelectrolysis as a pathway to hydrogen fuel. Nanostructured devices are widely regarded as an opportunity to improve efficiency and lower costs, but as a detailed analysis shows, they also have considerably disadvantages. This article reviews the current state of research on nanoscale-enhanced photoelectrodes and photocatalysts for the water splitting reaction. The focus is on transition metal oxides with special emphasis of Fe(2)O(3), but nitrides and chalcogenides, and main group element compounds, including carbon nitride and silicon, are also covered. The effects of nanostructuring on carrier generation and collection, multiple exciton generation, and quantum confinement are also discussed, as well as implications of particle size on surface recombination, on the size of space charge layers and on the possibility of controlling nanostructure energetics via potential determining ions. After a summary of electrocatalytic and plasmonic nanostructures, the review concludes with an outlook on the challenges in solar fuel generation with nanoscale inorganic materials.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Materials
                Nat. Rev. Mater.
                Springer Nature
                2058-8437
                January 20 2016
                January 20 2016
                : 1
                : 2
                : 15010
                Article
                10.1038/natrevmats.2015.10
                fae93834-3de4-4bb0-b053-df9e218c0686
                © 2016
                History

                Comments

                Comment on this article