33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bayesian semi-blind component separation for foreground removal in interferometric 21-cm observations

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present in this paper a new Bayesian semi-blind approach for foreground removal in observations of the 21-cm signal with interferometers. The technique, which we call HIEMICA (HI Expectation-Maximization Independent Component Analysis), is an extension of the Independent Component Analysis (ICA) technique developed for two-dimensional (2D) CMB maps to three-dimensional (3D) 21-cm cosmological signals measured by interferometers. This technique provides a fully Bayesian inference of power spectra and maps and separates the foregrounds from signal based on the diversity of their power spectra. Only relying on the statistical independence of the components, this approach can jointly estimate the 3D power spectrum of the 21-cm signal and, the 2D angular power spectrum and the frequency dependence of each foreground component, without any prior assumptions about foregrounds. This approach has been tested extensively by applying it to mock data from interferometric 21-cm intensity mapping observations under idealized assumptions of instrumental effects. We also discuss the impact when the noise properties are not known completely. As a first step toward solving the 21 cm power spectrum analysis problem we compare the semi-blind HIEMICA technique with the commonly used Principal Component Analysis (PCA). Under the same idealized circumstances the proposed technique provides significantly improved recovery of the power spectrum. This technique can be applied straightforwardly to all 21-cm interferometric observations, including epoch of reionization measurements, and can be extended to single-dish observations as well.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Five-Hundred-Meter Aperture Spherical Radio Telescope (FAST) Project

          Five-hundred-meter Aperture Spherical radio Telescope (FAST) is a Chinese mega-science project to build the largest single dish radio telescope in the world. Its innovative engineering concept and design pave a new road to realize a huge single dish in the most effective way. FAST also represents Chinese contribution in the international efforts to build the square kilometer array (SKA). Being the most sensitive single dish radio telescope, FAST will enable astronomers to jump-start many science goals, for example, surveying the neutral hydrogen in the Milky Way and other galaxies, detecting faint pulsars, looking for the first shining stars, hearing the possible signals from other civilizations, etc. The idea of sitting a large spherical dish in a karst depression is rooted in Arecibo telescope. FAST is an Arecibo-type antenna with three outstanding aspects: the karst depression used as the site, which is large to host the 500-meter telescope and deep to allow a zenith angle of 40 degrees; the active main reflector correcting for spherical aberration on the ground to achieve a full polarization and a wide band without involving complex feed systems; and the light-weight feed cabin driven by cables and servomechanism plus a parallel robot as a secondary adjustable system to move with high precision. The feasibility studies for FAST have been carried out for 14 years, supported by Chinese and world astronomical communities. The project time is 5.5 years from the commencement of work in March of 2011 and the first light is expected to be in 2016. This review intends to introduce FAST project with emphasis on the recent progress since 2006. In this paper, the subsystems of FAST are described in modest details followed by discussions of the fundamental science goals and examples of early science projects.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Component Separation With Flexible Models—Application to Multichannel Astrophysical Observations

              Bookmark

              Author and article information

              Journal
              2015-05-15
              2016-01-11
              Article
              10.3847/0067-0049/222/1/3
              1505.04146
              faf1eb6f-5ff2-4b19-ac46-6b8cf6696baf

              http://arxiv.org/licenses/nonexclusive-distrib/1.0/

              History
              Custom metadata
              ApJS 222, 3 (2016)
              18 pages, 7 figures, added some discussions about the impact of noise misspecification
              astro-ph.CO

              Cosmology & Extragalactic astrophysics
              Cosmology & Extragalactic astrophysics

              Comments

              Comment on this article