0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Retracted: RAGE Regulating Vascular Remodeling in Diabetes by Regulating Mitochondrial Dynamics with JAK2/STAT3 Pathway

      retraction
      Computational Intelligence and Neuroscience
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          RAGE Regulating Vascular Remodeling in Diabetes by Regulating Mitochondrial Dynamics with JAK2/STAT3 Pathway

          In this research, we will explore the role and modulation of mitochondrial dynamics in diabetes vascular remodeling. Only a few cell types express the pattern recognition receptor, also known as the AGE receptor (RAGE). However, it is triggered in almost all of the cells that have been investigated thus far by events that are known to cause inflammation. Here, Type 2 diabetes was studied in both cellular and animal models. Elevated Receptor for advanced glycation end products (RAGE), phosphorylated JAK2 (p-JAK2), phosphorylated STAT3 (p-STAT3), transient receptor potential ion channels (TRPM), and phosphorylated dynamin-related protein 1 (p-DRP1) were observed in the context of diabetes. In addition, we found that inhibition of RAGE was followed by a remarkable decrease in the expression of the above proteins. It has also been demonstrated by western blotting and immunofluorescence results in vivo and in vitro. Suppressing STAT3 and DRP1 phosphorylation produced effects similar to those of RAGE inhibition on the proliferation, cell cycle, migration, invasion, and expression of TRPM in VSMCs and vascular tissues obtained from diabetic animals. These findings indicate that RAGE regulates vascular remodeling via mitochondrial dynamics through modulating the JAK2/STAT3 axis in diabetes. The findings could be crucial in gaining a better understanding of diabetes-related vascular remodeling. It also contributes to a better cytopathological understanding of diabetic vascular disease and provides a theoretical foundation for novel targets that aid in the prevention and treatment of diabetes-related cardiovascular problems.
            Bookmark

            Author and article information

            Contributors
            Journal
            Comput Intell Neurosci
            Comput Intell Neurosci
            cin
            Computational Intelligence and Neuroscience
            Hindawi
            1687-5265
            1687-5273
            2023
            26 July 2023
            26 July 2023
            : 2023
            : 9832645
            Affiliations
            Article
            10.1155/2023/9832645
            10396717
            faf35ad8-2ddc-4107-b5b7-aa9fa0aa3edc
            Copyright © 2023 Computational Intelligence and Neuroscience.

            This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

            History
            : 25 July 2023
            : 25 July 2023
            Categories
            Retraction

            Neurosciences
            Neurosciences

            Comments

            Comment on this article