In spatial dimensions d >= 2, Kondo lattice models of conduction and local moment electrons can exhibit a fractionalized, non-magnetic state (FL*) with a Fermi surface of sharp electron-like quasiparticles, enclosing a volume quantized by (\rho_a-1)(mod 2), with \rho_a the mean number of all electrons per unit cell of the ground state. Such states have fractionalized excitations linked to the deconfined phase of a gauge theory. Confinement leads to a conventional Fermi liquid state, with a Fermi volume quantized by \rho_a (mod 2), and an intermediate superconducting state for the Z_2 gauge case. The FL* state permits a second order metamagnetic transition in an applied magnetic field.