30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ketamine-Induced Neurotoxicity and Changes in Gene Expression in the Developing Rat Brain

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, is widely used for analgesia and anesthesia in obstetric and pediatric practice. Recent reports indicate that ketamine causes neuronal cell death in developing rodents and nonhuman primates. The present study assessed the potential dose- and time-dependent neurotoxic effects and associated changes in gene expression after ketamine administration to postnatal day 7 (PND-7) rat pups.

          Pups were exposed to ketamine subcutaneously at doses of 5, 10, or 20 mg/kg, in one, three or six injections respectively. Control animals received the same volume of saline at the same time points. The animals were sacrificed 6 h after the last ketamine or saline administration and brain tissues were collected for RNA isolation and histochemical examination. Six injections of 20 mg/kg ketamine significantly increased neuronal cell death in frontal cortex, while lower doses and fewer injections did not show significant effects. The ketamine induced cell death seemed to be apoptotic in nature. In situ hybridization demonstrated that NMDA receptor NR1 subunit expression was dramatically increased in the frontal cortex of ketamine treated rats. Microarray analysis revealed altered expression of apoptotic relevant genes and increased NMDA receptor gene expression in brains from ketamine treated animals. Quantitative RT-PCR confirmed the microarray results. These data suggest that repeated exposures to high doses of ketamine can cause compensatory up-regulation of NMDA receptors and subsequently trigger apoptosis in developing neurons.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Heteromeric NMDA receptors: molecular and functional distinction of subtypes.

          The N-methyl D-aspartate (NMDA) receptor subtype of glutamate-gated ion channels possesses high calcium permeability and unique voltage-dependent sensitivity to magnesium and is modulated by glycine. Molecular cloning identified three complementary DNA species of rat brain, encoding NMDA receptor subunits NMDAR2A (NR2A), NR2B, and NR2C, which are 55 to 70% identical in sequence. These are structurally related, with less than 20% sequence identity, to other excitatory amino acid receptor subunits, including the NMDA receptor subunit NMDAR1 (NR1). Upon expression in cultured cells, the new subunits yielded prominent, typical glutamate- and NMDA-activated currents only when they were in heteromeric configurations with NR1. NR1-NR2A and NR1-NR2C channels differed in gating behavior and magnesium sensitivity. Such heteromeric NMDA receptor subtypes may exist in neurons, since NR1 messenger RNA is synthesized throughout the mature rat brain, while NR2 messenger RNA show a differential distribution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function.

            During ischemic brain injury, glutamate accumulation leads to overstimulation of postsynaptic glutamate receptors with intracellular Ca2+ overload and neuronal cell death. Here we show that glutamate can induce either early necrosis or delayed apoptosis in cultures of cerebellar granule cells. During and shortly after exposure to glutamate, a subpopulation of neurons died by necrosis. In these cells, mitochondrial membrane potential collapsed, nuclei swelled, and intracellular debris were scattered in the incubation medium. Neurons surviving the early necrotic phase recovered mitochondrial potential and energy levels. Later, they underwent apoptosis, as shown by the formation of apoptotic nuclei and by chromatin degradation into high and low molecular weight fragments. These results suggest that mitochondrial function is a critical factor that determines the mode of neuronal death in excitotoxicity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular cloning and characterization of the rat NMDA receptor.

              A complementary DNA encoding the rat NMDA receptor has been cloned and characterized. The single protein encoded by the cDNA forms a receptor-channel complex that has electrophysiological and pharmacological properties characteristic of the NMDA receptor. This protein has a significant sequence similarity to the AMPA/kainate receptors and contains four putative transmembrane segments following a large extracellular domain. The NMDA receptor messenger RNA is expressed in neuronal cells throughout the brain regions, particularly in the hippocampus, cerebral cortex and cerebellum.
                Bookmark

                Author and article information

                Journal
                Curr Neuropharmacol
                CN
                Current Neuropharmacology
                Bentham Science Publishers Ltd.
                1570-159X
                1875-6190
                March 2011
                : 9
                : 1
                : 256-261
                Affiliations
                []Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR 72079, USA
                Author notes
                [* ]Address correspondence to this author at the Division of Neurotoxicology, National Center for Toxicological Research/FDA 3900 NCTR Road Jefferson, AR 72079-9502, USA; Tel: 870-543-7259; Fax: 870-543-7576; E-mail: Cheng.Wang@ 123456fda.hhs.gov
                Article
                CN-9-256
                10.2174/157015911795017155
                3137194
                21886601
                faf4455b-7de2-451e-825a-d0768a0ba9f4
                ©2011 Bentham Science Publishers Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 October 2009
                : 17 April 2010
                : 26 May 2010
                Categories
                Article

                Pharmacology & Pharmaceutical medicine
                n-methyl-d-aspartate (nmda) receptor,microarray analysis.,ketamine,in situ hybridization,apoptosis

                Comments

                Comment on this article