23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pitx2a binds to human papillomavirus type 18 E6 protein and inhibits E6-mediated P53 degradation in HeLa cells.

      The Journal of Biological Chemistry
      Animals, Cell Cycle, physiology, DNA-Binding Proteins, antagonists & inhibitors, metabolism, Gene Expression Regulation, HeLa Cells, Homeodomain Proteins, genetics, Humans, Mice, Oncogene Proteins, Viral, Protein Binding, Transcription Factors, Tumor Suppressor Protein p53

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Binding of high risk human papillomavirus (HPV) E6 protein to E6-associated protein (E6AP), a cellular ubiquitin-protein ligase, enables E6AP to ubiquitinate p53, leading to p53 degradation in cervical cancer cells such as HeLa cells. Here we report that Pitx2a, a bicoid-type homeodomain transcription factor, can bind to HPV E6 protein and inhibit E6/E6AP-mediated p53 degradation. Deletion of the Pitx2a homeodomain abrogates its ability to bind to HPV E6 protein and to induce p53 accumulation in HeLa cells, suggesting that the homeodomain of Pitx2a is essential for inhibition of E6/E6AP-mediated p53 degradation. Recombinant Pitx2a can also block E6/E6AP-mediated p53 degradation in vitro, indicating that this function of Pitx2a is independent of its transcription activity. Pitx2a does not regulate Hdm2-mediated p53 degradation, because Pitx2a does not affect p53 protein levels in HPV-negative cells, such as HCT116, U2OS, and C33A cells. In addition, Pitx2a-induced p53 is transcriptionally active and maintains its specific DNA binding activity in HeLa cells. Taken together, these findings suggest that, by binding to E6, Pitx2a interferes with E6/E6AP-mediated p53 degradation, leading to the accumulation of functional p53 protein in HeLa cells.

          Related collections

          Author and article information

          Comments

          Comment on this article