32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fatty Acids from Pool Lipids as Possible Precursors of the Male Marking Pheromone in Bumblebees

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Triacylglycerols (TGs) stored in the fat bodies of bumblebee males have a species-specific composition. The striking structural similarities between TG fatty acids (FAs) and components of the male marking pheromone in certain species led to the hypothesis that FAs may serve as precursors in pheromone biosynthesis. Here, we analysed TGs from B. ruderatus, B. bohemicus, and B. campestris. Nonadec-9-ene and icos-15-en-1-ol are the main components of B. ruderatus labial gland secretion, forming up to 92% of the gland extract. The corresponding icos-11-enic and icos-15-enic acids were found in TGs at levels higher than usual for bumblebee species. We found similar relationships in B. campestris and B. bohemicus. These results suggest that FAs might be precursors of aliphatic compounds in the male pheromones. Furthermore, we report for the first time the pheromone structure of B. ruderatus males.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Insect pheromones--an overview of biosynthesis and endocrine regulation.

          This overview describes, compares, and attempts to unify major themes related to the biosynthetic pathways and endocrine regulation of insect pheromone production. Rather than developing and dedicating an entirely unique set of enzymes for pheromone biosynthesis, insects appear to have evolved to add one or a few tissue-specific auxiliary or modified enzymes that transform the products of "normal" metabolism to pheromone compounds of high stereochemical and quantitative specificity. This general understanding is derived from research on model species from one exopterygote insect order (Blattodea) and three endopterygote insect orders (Coleoptera, Diptera, and Lepidoptera). For instance, the ketone hydrocarbon contact sex pheromone of the female German cockroach, Blattella germanica, derives its origins from fatty acid biosynthesis, arising from elongation of a methyl-branched fatty acyl-CoA moiety followed by decarboxylation, hydroxylation, and oxidation. Coleopteran sex and aggregation pheromones also arise from modifications of fatty acid biosynthesis or other biosynthetic pathways, such as the isoprenoid pathway (e.g. Cucujidae, Curculionidae, and Scolytidae), or from simple transformations of amino acids or other highly elaborated host precursors (e.g. Scarabaeidae and Scolytidae). Like the sex pheromone of B. germanica, female-produced dipteran (e.g. Drosophilidae and Muscidae) sex pheromone components originate from elongation of fatty acyl-CoA moieties followed by loss of the carbonyl carbon and the formation of the corresponding hydrocarbon. Female-produced lepidopteran sex pheromones are also derived from fatty acids, but many moths utilize a species-specific combination of desaturation and chain-shortening reactions followed by reductive modification of the carbonyl carbon. Carbon skeletons derived from amino acids can also be used as chain initiating units and elongated to lepidopteran pheromones by this pathway (e.g. Arctiidae and Noctuidae). Insects utilize at least three hormonal messengers to regulate pheromone biosynthesis. Blattodean and coleopteran pheromone production is induced by juvenile hormone III (JH III). In the female common house fly, Musca domestica, and possibly other species of Diptera, it appears that during hydrocarbon sex pheromone biosynthesis, ovarian-produced ecdysteroids regulate synthesis by affecting the activities of one or more fatty acyl-CoA elongation enzyme(s) (elongases). Lepidopteran sex pheromone biosynthesis is often mediated by a 33 or 34 amino acid pheromone biosynthesis activating neuropeptide (PBAN) through alteration of enzyme activities at one or more steps prior to or during fatty acid synthesis or during modification of the carbonyl group. Although a molecular level understanding of the regulation of insect pheromone biosynthesis is in its infancy, in the male California fivespined ips, Ips paraconfusus (Coleoptera: Scolytidae), JH III acts at the transcriptional level by increasing the abundance of mRNA for 3-hydroxy-3-methylglutaryl-CoA reductase, a key enzyme in de novo isoprenoid aggregation pheromone biosynthesis.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Male labial gland secretions and mitochondrial DNA markers support species status of Bombus cryptarum and B. magnus (Hymenoptera, Apidae)

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resolution and purification of an aldehyde-generating and an alcohol-generating fatty acyl-CoA reductase from pea leaves (Pisum sativum L.).

              Higher plant tissues produce both wax esters generated from fatty alcohols and hydrocarbons generated from fatty aldehydes. If two different reductases are responsible for the synthesis of aldehydes and alcohols, both types of reductases may be present in such tissues. To test for this possibility, pea leaves, known to produce both types of wax components, were examined. Subcellular fractionation showed that acyl-CoA reductase activities were localized mainly in the microsomal fraction. Fatty aldehyde formation was rectilinear for 30 min and subsequently decreased, whereas fatty alcohol formation remained linear for 2 h. The two activities in the microsomes were differently affected by pH; alcohol formation was optimal between pH 5 and pH 6, whereas aldehyde formation was optimal at around pH 7.5. With solubilized microsomes, protein concentration dependence of alcohol formation showed a sigmoidal pattern, possibly suggesting inhibition by hexadecanoyl-CoA at low protein concentrations. Bovine serum albumin (BSA) enhanced alcohol formation. In contrast, the aldehyde generation showed a typical protein concentration dependence, and BSA severely inhibited aldehyde generation. Phosphatidylcholine showed over twofold stimulation for alcohol formation, whereas aldehyde formation was only slightly stimulated. All of this biochemical evidence suggested the presence of two different reductases. Confirming this hypothesis, an aldehyde-generating and an alcohol-generating reductase were resolved from the solubilized microsomal proteins using Blue A agarose, gel filtration, and hexadecanoyl-CoA affinity chromatography. SDS-PAGE of the purified proteins showed that the alcohol-generating enzyme was a 58-kDa protein and the aldehyde-forming one was a 28-kDa protein. It is proposed that two different elongating systems are functionally coupled to the alcohol-generating and aldehyde-generating reductases, which in turn are coupled to the transacylase to produce wax esters and to the decarbonylase to produce hydrocarbons, respectively.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                21 February 2014
                February 2014
                : 19
                : 2
                : 2330-2343
                Affiliations
                Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, Prague 166 10, Czech Republic; E-Mails: kofronova@ 123456uochb.cas.cz (E.K.); adamnekola@ 123456centrum.cz (A.N.); cvacka@ 123456uochb.cas.cz (J.C.); kindl@ 123456uochb.cas.cz (J.K.)
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: irena@ 123456uochb.cas.cz ; Tel.: +420-220-183-298.
                Article
                molecules-19-02330
                10.3390/molecules19022330
                6271375
                24566306
                fb03bcca-d797-4d3e-82dd-a72fbde76170
                © 2014 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 31 December 2013
                : 14 February 2014
                : 14 February 2014
                Categories
                Article

                bombus ruderatus,bombus campestris,bombus bohemicus,fat body,labial gland secretion,pheromone biosynthesis

                Comments

                Comment on this article