12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting neuro-immune systems to achieve cardiac tissue repair following myocardial infarction: A review of therapeutic approaches from in-vivo preclinical to clinical studies

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Myocardial healing following myocardial infarction (MI) toward either functional tissue repair or excessive scarring/heart failure, may depend on a complex interplay between nervous and immune system responses, myocardial ischemia/reperfusion injury factors, as well as genetic and epidemiological factors. Hence, enhancing cardiac repair post MI may require a more patient-specific approach targeting this complex interplay and not just the heart, bearing in mind that the dysregulation or modulation of just one of these systems or some of their mechanisms may determine the outcome either toward functional repair or toward heart failure.

          In this review we have elected to focus on existing preclinical and clinical in-vivo studies aimed at testing novel therapeutic approaches targeting the nervous and immune systems to trigger myocardial healing toward functional tissue repair. To this end, we have only selected clinical and preclinical in-vivo studies reporting on novel treatments targeting neuro-immune systems to ultimately treat MI. Next, we have grouped and reported treatments under each neuro-immune system. Finally, for each treatment we have assessed and reported the results of each clinical/preclinical study and then discussed their results collectively. This structured approach has been followed for each treatment discussed. To keep this review focused, we have deliberately omitted to cover other important and related research areas such as myocardial ischemia/reperfusion injury, cell and gene therapies as well as any ex-vivo and in-vitro studies.

          The review indicates that some of the treatments targeting the neuro-immune/inflammatory systems appear to induce beneficial effects remotely on the healing heart post MI, warranting further validation. These remote effects on the heart also indicates the presence of an overarching synergic response occurring across the nervous and immune systems in response to acute MI, which appear to influence cardiac tissue repair in different ways depending on age and timing of treatment delivery following MI. The cumulative evidence arising from this review allows also to make informed considerations on safe as opposed to detrimental treatments, and within the safe treatments to ascertain those associated with conflicting or supporting preclinical data, and those warranting further validation.

          Related collections

          Most cited references150

          • Record: found
          • Abstract: found
          • Article: not found

          The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis.

          In adult mammals, massive sudden loss of cardiomyocytes after infarction overwhelms the limited regenerative capacity of the myocardium, resulting in the formation of a collagen-based scar. Necrotic cells release danger signals, activating innate immune pathways and triggering an intense inflammatory response. Stimulation of toll-like receptor signaling and complement activation induces expression of proinflammatory cytokines (such as interleukin-1 and tumor necrosis factor-α) and chemokines (such as monocyte chemoattractant protein-1/ chemokine (C-C motif) ligand 2 [CCL2]). Inflammatory signals promote adhesive interactions between leukocytes and endothelial cells, leading to extravasation of neutrophils and monocytes. As infiltrating leukocytes clear the infarct from dead cells, mediators repressing inflammation are released, and anti-inflammatory mononuclear cell subsets predominate. Suppression of the inflammatory response is associated with activation of reparative cells. Fibroblasts proliferate, undergo myofibroblast transdifferentiation, and deposit large amounts of extracellular matrix proteins maintaining the structural integrity of the infarcted ventricle. The renin-angiotensin-aldosterone system and members of the transforming growth factor-β family play an important role in activation of infarct myofibroblasts. Maturation of the scar follows, as a network of cross-linked collagenous matrix is formed and granulation tissue cells become apoptotic. This review discusses the cellular effectors and molecular signals regulating the inflammatory and reparative response after myocardial infarction. Dysregulation of immune pathways, impaired suppression of postinfarction inflammation, perturbed spatial containment of the inflammatory response, and overactive fibrosis may cause adverse remodeling in patients with infarction contributing to the pathogenesis of heart failure. Therapeutic modulation of the inflammatory and reparative response may hold promise for the prevention of postinfarction heart failure.
            • Record: found
            • Abstract: found
            • Article: not found

            Chemokines and chemokine receptors: positioning cells for host defense and immunity.

            Chemokines are chemotactic cytokines that control the migratory patterns and positioning of all immune cells. Although chemokines were initially appreciated as important mediators of acute inflammation, we now know that this complex system of approximately 50 endogenous chemokine ligands and 20 G protein-coupled seven-transmembrane signaling receptors is also critical for the generation of primary and secondary adaptive cellular and humoral immune responses. Recent studies demonstrate important roles for the chemokine system in the priming of naive T cells, in cell fate decisions such as effector and memory cell differentiation, and in regulatory T cell function. In this review, we focus on recent advances in understanding how the chemokine system orchestrates immune cell migration and positioning at the organismic level in homeostasis, in acute inflammation, and during the generation and regulation of adoptive primary and secondary immune responses in the lymphoid system and peripheral nonlymphoid tissue.
              • Record: found
              • Abstract: found
              • Article: not found

              Transient regenerative potential of the neonatal mouse heart.

              Certain fish and amphibians retain a robust capacity for cardiac regeneration throughout life, but the same is not true of the adult mammalian heart. Whether the capacity for cardiac regeneration is absent in mammals or whether it exists and is switched off early after birth has been unclear. We found that the hearts of 1-day-old neonatal mice can regenerate after partial surgical resection, but this capacity is lost by 7 days of age. This regenerative response in 1-day-old mice was characterized by cardiomyocyte proliferation with minimal hypertrophy or fibrosis, thereby distinguishing it from repair processes. Genetic fate mapping indicated that the majority of cardiomyocytes within the regenerated tissue originated from preexisting cardiomyocytes. Echocardiography performed 2 months after surgery revealed that the regenerated ventricular apex had normal systolic function. Thus, for a brief period after birth, the mammalian heart appears to have the capacity to regenerate.

                Author and article information

                Journal
                7905840
                Pharmacol Ther
                Pharmacol Ther
                Pharmacology & therapeutics
                0163-7258
                1879-016X
                01 May 2023
                28 March 2023
                29 July 2024
                14 August 2024
                : 245
                : 108397
                Affiliations
                Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol ( https://ror.org/0524sp257) , Bristol, UK
                Author notes
                [* ]Corresponding author at: Bristol Heart Institute, Department of Translational Science, Bristol Royal Infirmary, level 7, University of Bristol, Bristol BS2 8HW, United Kingdom. R.Ascione@ 123456bristol.ac.uk (R. Ascione).

                Associate editor: S.J. Enna

                Article
                EMS197856
                10.1016/j.pharmthera.2023.108397
                7616359
                36996910
                fb190b6d-2b9d-41c5-9bb0-6bcae5cee59e

                This work is licensed under a BY 4.0 International license.

                History
                Categories
                Article

                Pharmacology & Pharmaceutical medicine
                myocardial infarction,cardiac repair,ischemic heart failure,neuro-immune response,therapeutic approaches

                Comments

                Comment on this article

                Related Documents Log