19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of hypoallergenic variants of the major horse allergen Equ c 1 for immunotherapy by rational structure based engineering

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The use of recombinant allergens is a promising approach in allergen-specific immunotherapy (AIT). Considerable limitation, however, has been the ability of recombinant allergens to activate effector cells leading to allergic reactions. Recombinant hypoallergens with preserved protein folding and capacity to induce protective IgG antibodies binding effectively to the native allergen upon sensitization would be beneficial for safer AIT. In this study, hypoallergen variants of the major horse allergen Equ c 1 were designed by introducing one point mutation on the putative IgE epitope region and two mutations on the monomer-monomer interface of Equ c 1 dimer. The recombinant Equ c 1 wild type and the variants were produced and purified to homogeneity, characterized by size-exclusion ultra-high performance liquid chromatography and ultra-high resolution mass spectrometry. The IgE-binding profiles were analyzed by a competitive immunoassay and the biological activity by a histamine release assay using sera from horse allergic individuals. Two Equ c 1 variants, Triple 2 (V47K + V110E + F112K) and Triple 3 (E21Y + V110E + F112K) showed lower allergen-specific IgE-binding capacity and decreased capability to release histamine from basophils in vitro when using sera from six allergic individuals. Triple 3 showed higher reduction than Triple 2 in IgE-binding (5.5 fold) and in histamine release (15.7 fold) compared to wild type Equ c 1. Mutations designed on the putative IgE epitope region and monomer-monomer interface of Equ c 1 resulted in decreased dimerization, a lower IgE-binding capacity and a reduced triggering of an allergic response in vitro.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Mechanisms of allergen-specific immunotherapy and immune tolerance to allergens

          Substantial progress in understanding mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumors, organ transplantation and chronic infections has led to a variety of targeted therapeutic approaches. Allergen-specific immunotherapy (AIT) has been used for 100 years as a desensitizing therapy for allergic diseases and represents the potentially curative and specific way of treatment. The mechanisms by which allergen-AIT has its mechanisms of action include the very early desensitization effects, modulation of T- and B-cell responses and related antibody isotypes as well as inhibition of migration of eosinophils, basophils and mast cells to tissues and release of their mediators. Regulatory T cells (Treg) have been identified as key regulators of immunological processes in peripheral tolerance to allergens. Skewing of allergen-specific effector T cells to a regulatory phenotype appears as a key event in the development of healthy immune response to allergens and successful outcome in AIT. Naturally occurring FoxP3+ CD4+CD25+ Treg cells and inducible type 1 Treg (Tr1) cells contribute to the control of allergen-specific immune responses in several major ways, which can be summarized as suppression of dendritic cells that support the generation of effector T cells; suppression of effector Th1, Th2 and Th17 cells; suppression of allergen-specific IgE, and induction of IgG4; suppression of mast cells, basophils and eosinophils and suppression of effector T cell migration to tissues. New strategies for immune intervention will likely include targeting of the molecular mechanisms of allergen tolerance and reciprocal regulation of effector and regulatory T cell subsets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-affinity allergen-specific human antibodies cloned from single IgE B cell transcriptomes

            Immunoglobulin E (IgE) antibodies protect against helminth infections but can also cause life-threatening allergic reactions. Despite their role in human health, the cells that produce these antibodies are rarely observed and remain enigmatic. We isolated single IgE B cells from individuals with food allergies and used single-cell RNA sequencing to elucidate the gene expression and splicing patterns unique to these cells. We identified a surprising example of convergent evolution in which IgE antibodies underwent identical gene rearrangements in unrelated individuals. Through the acquisition of variable region mutations, these IgE antibodies gained high affinity and unexpected cross-reactivity to the clinically important peanut allergens Ara h 2 and Ara h 3. These findings provide insight into IgE B cell transcriptomics and enable biochemical dissection of this antibody class.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular interactions between a recombinant IgE antibody and the beta-lactoglobulin allergen.

              Allergies are caused by the immune reaction to commonly harmless proteins, allergens. This reaction is typified by immunoglobulin E (IgE) antibodies. We report the crystal structure of an IgE Fab fragment in complex with beta-lactoglobulin (BLG), one of the major allergens of bovine milk. The solved structure shows how two IgE/Fab molecules bind the dimeric BLG. The epitope of BLG consists of six different short fragments of the polypeptide chain, which are located especially in the beta strands, covering a flat area on the allergen surface. All six CDR (complementary-determining region) loops of the IgE Fab participate in the binding of BLG. The light chain CDR loops are responsible for the binding of the flat beta sheet region of BLG. The IgE epitope is different from common IgG epitopes that are normally located in the exposed loop regions of antigens and observed also in the two recently determined allergen-IgG complexes.
                Bookmark

                Author and article information

                Contributors
                juha.rouvinen@uef.fi
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                27 December 2019
                27 December 2019
                2019
                : 9
                : 20148
                Affiliations
                [1 ]Desentum Ltd, Kivipylväänkuja 5, 02940 Espoo, Finland
                [2 ]ISNI 0000 0001 0726 2490, GRID grid.9668.1, Department of Chemistry, , University of Eastern Finland, ; PO Box 111, 80101 Joensuu, Finland
                [3 ]ISNI 0000 0004 0400 1852, GRID grid.6324.3, VTT Technical Research Centre of Finland, ; PO Box 1000, 02044 Espoo, Finland
                Article
                56812
                10.1038/s41598-019-56812-1
                6934807
                31882906
                fb1accdd-3e0b-4641-8e8c-416f953d13c8
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 9 September 2019
                : 10 December 2019
                Funding
                Funded by: Desentum Ltd
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                protein vaccines,applied immunology,vaccines,protein design,immunochemistry,antigen processing and presentation,signal transduction

                Comments

                Comment on this article