Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      High performance and bendable few-layered InSe photodetectors with broad spectral response.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two-dimensional crystals with a wealth of exotic dimensional-dependent properties are promising candidates for next-generation ultrathin and flexible optoelectronic devices. For the first time, we demonstrate that few-layered InSe photodetectors, fabricated on both a rigid SiO2/Si substrate and a flexible polyethylene terephthalate (PET) film, are capable of conducting broadband photodetection from the visible to near-infrared region (450-785 nm) with high photoresponsivities of up to 12.3 AW(-1) at 450 nm (on SiO2/Si) and 3.9 AW(-1) at 633 nm (on PET). These photoresponsivities are superior to those of other recently reported two-dimensional (2D) crystal-based (graphene, MoS2, GaS, and GaSe) photodetectors. The InSe devices fabricated on rigid SiO2/Si substrates possess a response time of ∼50 ms and exhibit long-term stability in photoswitching. These InSe devices can also operate on a flexible substrate with or without bending and reveal comparable performance to those devices on SiO2/Si. With these excellent optoelectronic merits, we envision that the nanoscale InSe layers will not only find applications in flexible optoelectronics but also act as an active component to configure versatile 2D heterostructure devices.

          Related collections

          Author and article information

          Journal
          Nano Lett.
          Nano letters
          American Chemical Society (ACS)
          1530-6992
          1530-6984
          May 14 2014
          : 14
          : 5
          Affiliations
          [1 ] Institute of Atomic and Molecular Sciences, Academia Sinica , Taipei 106, Taiwan.
          Article
          10.1021/nl500817g
          24742243

          Comments

          Comment on this article