20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modified Electrospun Polymeric Nanofibers and Their Nanocomposites as Nanoadsorbents for Toxic Dye Removal from Contaminated Waters: A Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Electrospun polymer nanofibers (EPNFs) as one-dimensional nanostructures are characterized by a high surface area-to-volume ratio, high porosity, large number of adsorption sites and high adsorption capacity. These properties nominate them to be used as an effective adsorbent for the removal of water pollutants such as heavy metals, dyes and other pollutants. Organic dyes are considered one of the most hazardous water pollutants due to their toxic effects even at very low concentrations. To overcome this problem, the adsorption technique has proven its high effectiveness towards the removal of such pollutants from aqueous systems. The use of the adsorption technique depends mainly on the properties, efficacy, cost and reusability of the adsorbent. So, the use of EPNFs as adsorbents for dye removal has received increasing attention due to their unique properties, adsorption efficiency and reusability. Moreover, the adsorption efficiency and stability of EPNFs in aqueous media can be improved via their surface modification. This review provides a relevant literature survey over the last two decades on the fabrication and surface modification of EPNFs by an electrospinning technique and their use of adsorbents for the removal of various toxic dyes from contaminated water. Factors affecting the adsorption capacity of EPNFs, the best adsorption conditions and adsorption mechanism of dyes onto the surface of various types of modified EPNFs are also discussed. Finally, the adsorption capacity, isotherm and kinetic models for describing the adsorption of dyes using modified and composite EPNFs are discussed.

          Related collections

          Most cited references218

          • Record: found
          • Abstract: found
          • Article: not found

          Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications

          Electrospinning is a versatile and viable technique for generating ultrathin fibers. Remarkable progress has been made with regard to the development of electrospinning methods and engineering of electrospun nanofibers to suit or enable various applications. We aim to provide a comprehensive overview of electrospinning, including the principle, methods, materials, and applications. We begin with a brief introduction to the early history of electrospinning, followed by discussion of its principle and typical apparatus. We then discuss its renaissance over the past two decades as a powerful technology for the production of nanofibers with diversified compositions, structures, and properties. Afterward, we discuss the applications of electrospun nanofibers, including their use as “smart” mats, filtration membranes, catalytic supports, energy harvesting/conversion/storage components, and photonic and electronic devices, as well as biomedical scaffolds. We highlight the most relevant and recent advances related to the applications of electrospun nanofibers by focusing on the most representative examples. We also offer perspectives on the challenges, opportunities, and new directions for future development. At the end, we discuss approaches to the scale-up production of electrospun nanofibers and briefly discuss various types of commercial products based on electrospun nanofibers that have found widespread use in our everyday life.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electrospinning: a fascinating method for the preparation of ultrathin fibers.

            Electrospinning is a highly versatile method to process solutions or melts, mainly of polymers, into continuous fibers with diameters ranging from a few micrometers to a few nanometers. This technique is applicable to virtually every soluble or fusible polymer. The polymers can be chemically modified and can also be tailored with additives ranging from simple carbon-black particles to complex species such as enzymes, viruses, and bacteria. Electrospinning appears to be straightforward, but is a rather intricate process that depends on a multitude of molecular, process, and technical parameters. The method provides access to entirely new materials, which may have complex chemical structures. Electrospinning is not only a focus of intense academic investigation; the technique is already being applied in many technological areas.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enantioselective catalysis with homochiral metal-organic frameworks.

              This tutorial review presents recent developments of homochiral metal-organic frameworks (MOFs) in enantioselective catalysis. Following a brief introduction of the basic concepts and potential virtues of MOFs in catalysis, we summarize three distinct strategies that have been utilized to synthesize homochiral MOFs. Framework stability and accessibility of the open channels to reagents are then addressed. We finally survey recent successful examples of catalytically active homochiral MOFs based on three approaches, namely, homochiral MOFs with achiral catalytic sites, incorporation of asymmetric catalysts directly into the framework, and post-synthetic modification of homochiral MOFs. Although still in their infancy, homochiral MOFs have clearly demonstrated their utility in heterogeneous asymmetric catalysis, and a bright future is foreseen for the development of practically useful homochiral MOFs in the production of optically pure organic molecules.
                Bookmark

                Author and article information

                Journal
                Polymers (Basel)
                Polymers (Basel)
                polymers
                Polymers
                MDPI
                2073-4360
                23 December 2020
                January 2021
                : 13
                : 1
                : 20
                Affiliations
                Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; bthamer@ 123456ksu.edu.sa (B.M.T.); malhameed@ 123456ksu.edu.sa (M.M.A.); mrahaman@ 123456ksu.edu.sa (M.R.); melnewehy@ 123456ksu.edu.sa (M.H.E.-N.)
                Author notes
                [* ]Correspondence: aaldalbahi@ 123456ksu.edu.sa
                Author information
                https://orcid.org/0000-0003-3441-9021
                https://orcid.org/0000-0003-1644-2367
                https://orcid.org/0000-0001-5394-7933
                https://orcid.org/0000-0002-4265-0701
                Article
                polymers-13-00020
                10.3390/polym13010020
                7793529
                33374681
                fb1f3011-5b11-4e54-950f-de479471332a
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 November 2020
                : 18 December 2020
                Categories
                Review

                nanofibers,polymers,functionalization,nanocomposites,adsorption,dyes,wastewater

                Comments

                Comment on this article