1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Setmelanotide, a Novel, Selective Melanocortin Receptor-4 Agonist Exerts Anti-inflammatory Actions in Astrocytes and Promotes an Anti-inflammatory Macrophage Phenotype

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To date, available treatment strategies for multiple sclerosis (MS) are ineffective in preventing or reversing progressive neurologic deterioration, creating a high, and unmet medical need. One potential way to fight MS may be by limiting the detrimental effects of reactive astrocytes, a key pathological hallmark for disease progression. One class of compounds that may exert beneficial effects via astrocytes are melanocortin receptor (MCR) agonists. Among the MCR, MC4R is most abundantly expressed in the CNS and several rodent studies have described that MC4R is—besides neurons—expressed by astrocytes. Activation of MC4R in astrocytes has shown to have potent anti-inflammatory as well as neuroprotective effects in vitro, suggesting that this could be a potential target to ameliorate ongoing inflammation, and neurodegeneration in MS. In this study, we set out to investigate human MC4R expression and analyze its downstream effects. We identified MC4R mRNA and protein to be expressed on astrocytes and observed increased astrocytic MC4R expression in active MS lesions. Furthermore, we show that the novel, highly selective MC4R agonist setmelanotide ameliorates the reactive phenotype in astrocytes in vitro and markedly induced interleukin−6 and −11 production, possibly through enhanced cAMP response element-binding protein (CREB) phosphorylation. Notably, stimulation of human macrophages with medium from astrocytes that were exposed to setmelanotide, skewed macrophages toward an anti-inflammatory phenotype. Taken together, these findings suggest that targeting MC4R on astrocytes might be a novel therapeutic strategy to halt inflammation-associated neurodegeneration in MS.

          Related collections

          Most cited references 42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status

          Background Macrophages play a dual role in multiple sclerosis (MS) pathology. They can exert neuroprotective and growth promoting effects but also contribute to tissue damage by production of inflammatory mediators. The effector function of macrophages is determined by the way they are activated. Stimulation of monocyte-derived macrophages in vitro with interferon-γ and lipopolysaccharide results in classically activated (CA/M1) macrophages, and activation with interleukin 4 induces alternatively activated (AA/M2) macrophages. Methods For this study, the expression of a panel of typical M1 and M2 markers on human monocyte derived M1 and M2 macrophages was analyzed using flow cytometry. This revealed that CD40 and mannose receptor (MR) were the most distinctive markers for human M1 and M2 macrophages, respectively. Using a panel of M1 and M2 markers we next examined the activation status of macrophages/microglia in MS lesions, normal appearing white matter and healthy control samples. Results Our data show that M1 markers, including CD40, CD86, CD64 and CD32 were abundantly expressed by microglia in normal appearing white matter and by activated microglia and macrophages throughout active demyelinating MS lesions. M2 markers, such as MR and CD163 were expressed by myelin-laden macrophages in active lesions and perivascular macrophages. Double staining with anti-CD40 and anti-MR revealed that approximately 70% of the CD40-positive macrophages in MS lesions also expressed MR, indicating that the majority of infiltrating macrophages and activated microglial cells display an intermediate activation status. Conclusions Our findings show that, although macrophages in active MS lesions predominantly display M1 characteristics, a major subset of macrophages have an intermediate activation status.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration.

            We investigated proinflammatory M1 and immunomodulatory M2 activation profiles of circulating monocytes in relapsing experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis, and tested whether altered M1/M2 equilibrium promotes CNS inflammation. Approaches of MRI macrophage tracking with USPIO nanoparticles and expression patterns of M1/M2 macrophages and microglia in brain and M1/M2 monocytes in blood samples at various disease stages revealed that M1/M2 equilibrium in blood and CNS favors mild EAE, while imbalance towards M1 promotes relapsing EAE. We consequently investigated whether M2 activated monocyte restoration in peripheral blood could cure acute clinical EAE disease. Administration of ex vivo activated M2 monocytes both suppressed ongoing severe EAE and increased immunomodulatory expression pattern in lesions, confirming their role in the induction of recovery. We conclude that imbalance of monocyte activation profiles and impaired M2 expression, are key factors in development of relapses. Our study opens new perspectives for therapeutic applications in MS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells.

              Tumor-associated macrophages (TAMs), the most abundant immunosuppressive cells in the tumor microenvironment, originate from blood monocytes and exhibit an IL-10(high)IL-12(low) M2 profile. The factors involved in TAM generation remain unidentified. We identify here leukemia inhibitory factor (LIF) and IL-6 as tumor microenvironmental factors that can promote TAM generation. Ovarian cancer ascites switched monocyte differentiation into TAM-like cells that exhibit most ovarian TAM functional and phenotypic characteristics. Ovarian cancer ascites contained high concentrations of LIF and IL-6. Recombinant LIF and IL-6 skew monocyte differentiation into TAM-like cells by enabling monocytes to consume monocyte-colony-stimulating factor (M-CSF). Depletion of LIF, IL-6, and M-CSF in ovarian cancer ascites suppressed TAM-like cell induction. We extended these observations to different tumor-cell line supernatants. In addition to revealing a new tumor-escape mechanism associated with TAM generation via LIF and IL-6, these findings offer novel therapeutic perspectives to subvert TAM-induced immunosuppression and hence improve T-cell-based antitumor immunotherapy efficacy.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                04 October 2019
                2019
                : 10
                Affiliations
                1Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam , Amsterdam, Netherlands
                2Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam , Amsterdam, Netherlands
                Author notes

                Edited by: Jorge Matias-Guiu, Complutense University of Madrid, Spain

                Reviewed by: Carla Mariana Caruso, National Council for Scientific and Technical Research (CONICET), Argentina; Ya-Xiong Tao, Auburn University, United States

                *Correspondence: Merel Rijnsburger m.rijnsburger@ 123456amsterdamumc.nl

                This article was submitted to Multiple Sclerosis and Neuroimmunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2019.02312
                6788433
                Copyright © 2019 Kamermans, Verhoeven, van het Hof, Koning, Borghuis, Witte, van Horssen, de Vries and Rijnsburger.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 53, Pages: 13, Words: 8028
                Funding
                Funded by: Stichting MS Research 10.13039/501100003000
                Categories
                Immunology
                Original Research

                Immunology

                multiple sclerosis, inflammation, melanocortin, melanocortin receptor-4, astrocyte, macrophage

                Comments

                Comment on this article