21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Estimating stellar birth radii and the time evolution of the Milky Way's ISM metallicity gradient

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present a semi-empirical, largely model-independent approach for estimating Galactic birth radii, r_birth, for Milky Way disk stars. The technique relies on the justifiable assumption that a negative radial metallicity gradient in the interstellar medium (ISM) existed for most of the disk lifetime. Stars are projected back to their birth positions according to the observationally derived age and [Fe/H] with no kinematical information required. Applying our approach to the AMBRE:HARPS and HARPS-GTO local samples, we show that we can constrain the ISM metallicity evolution with Galactic radius and cosmic time, [Fe/H]_ISM(r, t), by requiring a physically meaningful r_birth distribution. We find that the data are consistent with an ISM radial metallicity gradient that flattens with time from ~-0.15 dex/kpc at the beginning of disk formation, to its measured present-day value (-0.07 dex/kpc). We present several chemo-kinematical relations in terms of mono-r_birth populations. One remarkable result is that the kinematically hottest stars would have been born locally or in the outer disk, consistent with thick disk formation from the nested flares of mono-age populations and predictions from cosmological simulations. This phenomenon can be also seen in the observed age-velocity dispersion relation, in that its upper boundary is dominated by stars born at larger radii. We also find that the flatness of the local age-metallicity relation (AMR) is the result of the superposition of the AMRs of mono-r_birth populations, each with a well-defined negative slope. The solar birth radius is estimated to be 7.3+-0.6 kpc, for a current Galactocentric radius of 8 kpc.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: not found
          • Conference Proceedings: not found

          WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The chemical evolution of the Galactic thick and thin disks

            Recent data have revealed a clear distinction between the abundance patterns of the Milky Way (MW) thick and thin disks, suggesting a different origin for each of these components. In this work we first review the main ideas on the formation of the thin disk. From chemical evolution arguments we show that the thin disk should have formed on a long timescale. We also show clear signs that the local stellar samples are contaminated by stars coming from inner radii. We then check what would have to be changed in such a model in order to explain the observables in the thick disk. We find that a model in which the thick disk forms on a much shorter timescale than thin disk and with a star formation efficiency of around a factor of 10 larger than that in the thin disk can account for the observed abundance ratio shifts of several elements between thick and thin disk stars. Moreover, the lack of scatter in the abundance ratio patterns of both the thick and thin disks suggest both components to have been formed in situ by gas accretion and not by mergers of smaller stellar systems. Especially for the thick disk, this last constraint becomes a strong one if its metallicity distribution extends to, at least, solar. Finally, we briefly discuss the interplay between present deuterium abundance and present infall rates in connection with the thin disk evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Apache Point Observatory Galactic Evolution Experiment (APOGEE) in Sloan Digital Sky Survey III (SDSS-III)

              The Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a large-scale, near-infrared ( H -band), high-resolution ( R ~ 30,000), high S / N (≳100) spectroscopic survey of Milky Way stellar populations. APOGEE will operate from 1.51–1.68μm, a region that includes useful absorption lines from at least fifteen chemical species including α, odd- Z , and iron peak elements. The APOGEE instrument has a novel design featuring 300 science fibers feeding light to a mosaiced VPH grating and a six-element camera encased in a liquid nitrogen-cooled cryostat. A three year bright-time observing campaign will enable APOGEE to observe approximately 100,000 red giants across the Galactic bulge, disk and halo.
                Bookmark

                Author and article information

                Journal
                18 April 2018
                Article
                1804.06856
                fb2e0aac-63b4-465b-b216-60418f5db6d5

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                14 p., 9 fig., submitted to MNRAS
                astro-ph.GA

                Galaxy astrophysics
                Galaxy astrophysics

                Comments

                Comment on this article