18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How Glucocorticoids Affect the Neutrophil Life

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glucocorticoids are hormones that regulate several functions in living organisms and synthetic glucocorticoids are the most powerful anti-inflammatory pharmacological tool that is currently available. Although glucocorticoids have an immunosuppressive effect on immune cells, they exert multiple and sometimes contradictory effects on neutrophils. From being extremely sensitive to the anti-inflammatory effects of glucocorticoids to resisting glucocorticoid-induced apoptosis, neutrophils are proving to be more complex than they were earlier thought to be. The aim of this review is to explain these complex pathways by which neutrophils respond to endogenous or to exogenous glucocorticoids, both under physiological and pathological conditions.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Glucocorticoid resistance in inflammatory diseases.

          Glucocorticoid resistance or insensitivity is a major barrier to the treatment of several common inflammatory diseases-including chronic obstructive pulmonary disease and acute respiratory distress syndrome; it is also an issue for some patients with asthma, rheumatoid arthritis, and inflammatory bowel disease. Several molecular mechanisms of glucocorticoid resistance have now been identified, including activation of mitogen-activated protein (MAP) kinase pathways by certain cytokines, excessive activation of the transcription factor activator protein 1, reduced histone deacetylase-2 (HDAC2) expression, raised macrophage migration inhibitory factor, and increased P-glycoprotein-mediated drug efflux. Patients with glucocorticoid resistance can be treated with alternative broad-spectrum anti-inflammatory treatments, such as calcineurin inhibitors and other immunomodulators, or novel anti-inflammatory treatments, such as inhibitors of phosphodiesterase 4 or nuclear factor kappaB, although these drugs are all likely to have major side-effects. An alternative treatment strategy is to reverse glucocorticoid resistance by blocking its underlying mechanisms. Some examples of this approach are inhibition of p38 MAP kinase, use of vitamin D to restore interleukin-10 response, activation of HDAC2 expression by use of theophylline, antioxidants, or phosphoinositide-3-kinase-delta inhibitors, and inhibition of macrophage migration inhibitory factor and P-glycoprotein.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of neutrophils during intestinal inflammation.

            Polymorphonuclear leukocytes or neutrophils play a critical role in the maintenance of intestinal homeostasis. They have elegant defense mechanisms to eliminate microbes that have translocated across a single layer of mucosal epithelial cells that form a critical barrier between the gut lumen and the underlying tissue. During the inflammatory response, neutrophils also contribute to the recruitment of other immune cells and facilitate mucosal healing by releasing mediators necessary for the resolution of inflammation. Although the above responses are clearly beneficial, excessive recruitment and accumulation of activated neutrophils in the intestine under pathological conditions such as inflammatory bowel disease is associated with mucosal injury and debilitating disease symptoms. Thus, depending on the circumstances, neutrophils can be viewed as either good or bad. In this article, we summarize the beneficial and deleterious roles of neutrophils in the intestine during health and disease and provide an overview of what is known about neutrophil function in the gut.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Decreased histone deacetylase activity in chronic obstructive pulmonary disease.

              Chronic obstructive pulmonary disease (COPD) is characterized by chronic airway inflammation that is greater in patients with advanced disease. We asked whether there is a link between the severity of disease and the reduction in histone deacetylase (HDAC) activity in the peripheral lung tissue of patients with COPD of varying severity. HDAC is a key molecule in the repression of production of proinflammatory cytokines in alveolar macrophages. HDAC activity and histone acetyltransferase (HAT) activity were determined in nuclear extracts of specimens of surgically resected lung tissue from nonsmokers without COPD, patients with COPD of varying severity, and patients with pneumonia or cystic fibrosis. Alveolar macrophages from nonsmokers, smokers, and patients with COPD and bronchial-biopsy specimens from nonsmokers, healthy smokers, patients with COPD, and those with mild asthma were also examined. Total RNA extracted from lung tissue and macrophages was used for quantitative reverse-transcriptase-polymerase-chain-reaction assay of HDAC1 through HDAC8 and interleukin-8. Expression of HDAC2 protein was quantified with the use of Western blotting. Histone-4 acetylation at the interleukin-8 promoter was evaluated with the use of a chromatin immunoprecipitation assay. Specimens of lung tissue obtained from patients with increasing clinical stages of COPD had graded reductions in HDAC activity and increases in interleukin-8 messenger RNA (mRNA) and histone-4 acetylation at the interleukin-8 promoter. The mRNA expression of HDAC2, HDAC5, and HDAC8 and expression of the HDAC2 protein were also lower in patients with increasing severity of disease. HDAC activity was decreased in patients with COPD, as compared with normal subjects, in both the macrophages and biopsy specimens, with no changes in HAT activity, whereas HAT activity was increased in biopsy specimens obtained from patients with asthma. Neither HAT activity nor HDAC activity was changed in lung tissue from patients with cystic fibrosis or pneumonia. Patients with COPD have a progressive reduction in total HDAC activity that reflects the severity of the disease. Copyright 2005 Massachusetts Medical Society.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                17 December 2018
                December 2018
                : 19
                : 12
                : 4090
                Affiliations
                Department of Medicine, Section of Pharmacology, University of Perugia, 06129 Perugia, Italy; erika.ricci@ 123456studenti.unipg.it (E.R.); graziella.migliorati@ 123456unipg.it (G.M.); marcogentili1988@ 123456hotmail.it (M.G.); carlo.riccardi@ 123456unipg.it (C.R.)
                Author notes
                [* ]Correspondence: simona.ronchetti@ 123456unipg.it ; Tel.: +39-0755858186
                Author information
                https://orcid.org/0000-0002-5639-4243
                https://orcid.org/0000-0002-2305-4488
                https://orcid.org/0000-0001-9257-3997
                Article
                ijms-19-04090
                10.3390/ijms19124090
                6321245
                30563002
                fb381780-505c-443e-ab7c-b6f6077bd29c
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 November 2018
                : 15 December 2018
                Categories
                Review

                Molecular biology
                glucocorticoids,neutrophils,inflammation,innate immunity
                Molecular biology
                glucocorticoids, neutrophils, inflammation, innate immunity

                Comments

                Comment on this article