0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Research on heavy metal level and co-occurrence network in typical ecological fragile area

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Due to the special sensitivity of typical ecologically fragile areas, a series of human life, mining, and other activities have a greater impact on the environment. In this study, three coal mines in Ordos City on the Loess Plateau were selected as the study area, and the pollution levels of heavy metals in the area were studied by measuring As, Hg, Cr, Cd, Cu, Ni, and Pb in the soil of 131 sampling points. Combined with the concept of “co-occurrence network” in biology, the level of heavy metals in soil was studied using geostatistics and remote sensing databases. The results showed that the concentrations of Hg, Cr, Ni, Cu, and Pb in more than half of the sampling points were higher than the local environmental background value, but did not exceed the risk control value specified by China, indicating that human factors have a greater influence, while Cd and As elements are mainly affected Soil parent material and human factors influence. Heavy metal elements have nothing to do with clay and silt but have an obvious correlation with gravel. Cd, Pb, As and Ni, Cd, Cr are all positively correlated, and different heavy metals are in space The distribution also reflects the autocorrelation, mainly concentrated in the northeast of the TS mining area and the middle of the PS mining area.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil.

          In recent years, culture-independent methods have been used in preference to traditional isolation techniques for microbial community analysis. However, it is questionable whether uncultured organisms from a given sample are important for determining the impact of anthropogenic stress on indigenous communities. To investigate this, soil samples were taken from a site with patchy metal contamination, and the bacterial community structure was assessed with a variety of approaches. There were small differences in microscopic epifluorescence bacterial counts. Denaturing gradient gel electrophoresis (DGGE) profiles of 16S rRNA gene fragments (16S-DGGE) amplified directly from soil samples were highly similar. A clone library generated from the most contaminated sample revealed a diverse bacterial community, which showed similarities to pristine soil communities from other studies. However, the proportion of bacteria from the soil samples that were culturable on standard plate-counting media varied between 0.08 and 2.2%, and these values correlated negatively with metal concentrations. The culturable communities from each sample were compared by 16S-DGGE of plate washes and by fatty acid profiling of individual isolates. Each approach indicated that there were considerable differences between the compositions of the culturable communities from each sample. DGGE bands from both culture-based and culture-independent approaches were sequenced and compared. These data indicated that metal contamination did not have a significant effect on the total genetic diversity present but affected physiological status, so that the number of bacteria capable of responding to laboratory culture and their taxonomic distribution were altered. Thus, it appears that plate counts may be a more appropriate method for determining the effect of heavy metals on soil bacteria than culture-independent approaches.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Water-energy-ecosystem nexus: Balancing competing interests at a run-of-river hydropower plant coupling a hydrologic–ecohydraulic approach

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud.

              We evaluated the effectiveness of lime and red mud (by-product of aluminium manufacturing) to reduce metal availability to Festuca rubra and to allow re-vegetation on a highly contaminated brown-field site. Application of both lime and red mud (at 3 or 5%) increased soil pH and decreased metal availability. Festuca rubra failed to establish in the control plots, but grew to a near complete vegetative cover on the amended plots. The most effective treatment in decreasing grass metal concentrations in the first year was 5% red mud, but by year two all amendments were equally effective. In an additional pot experiment, P application in combination with red mud or lime decreased the Pb concentration, but not total uptake of Pb in Festuca rubra compared to red mud alone. The results show that both red mud and lime can be used to remediate a heavily contaminated acid soil to allow re-vegetation.
                Bookmark

                Author and article information

                Contributors
                2052309437@qq.com
                Journal
                J Environ Health Sci Eng
                J Environ Health Sci Eng
                Journal of Environmental Health Science and Engineering
                Springer International Publishing (Cham )
                2052-336X
                8 March 2021
                8 March 2021
                June 2021
                : 19
                : 1
                : 531-540
                Affiliations
                GRID grid.440648.a, ISNI 0000 0001 0477 188X, Department of Environmental Science and Engineering, School of Earth and Environment, , Anhui University of Science and Technology, ; 232001 Huainan, People’s Republic of China
                Article
                625
                10.1007/s40201-021-00625-w
                8172680
                fb3b3ce7-f96a-4065-94c3-c1fa97a00747
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 6 August 2020
                : 13 January 2021
                : 2 February 2021
                Categories
                Research Article
                Custom metadata
                © Springer Nature Switzerland AG 2021

                heavy metals,co‐occurrence network,geostatistical analysis,moran index,soil

                Comments

                Comment on this article