60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pervasive and Persistent Redundancy among Duplicated Genes in Yeast

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The loss of functional redundancy is the key process in the evolution of duplicated genes. Here we systematically assess the extent of functional redundancy among a large set of duplicated genes in Saccharomyces cerevisiae. We quantify growth rate in rich medium for a large number of S. cerevisiae strains that carry single and double deletions of duplicated and singleton genes. We demonstrate that duplicated genes can maintain substantial redundancy for extensive periods of time following duplication (∼100 million years). We find high levels of redundancy among genes duplicated both via the whole genome duplication and via smaller scale duplications. Further, we see no evidence that two duplicated genes together contribute to fitness in rich medium substantially beyond that of their ancestral progenitor gene. We argue that duplicate genes do not often evolve to behave like singleton genes even after very long periods of time.

          Author Summary

          Gene duplication is the primary source of new genes. To persist, duplicated genes must lose some of the original redundancy either by partitioning the ancestral function (subfunctionalization) or by gaining new non-redundant functions (neofunctionalization). The extent to which these processes shape the evolution of duplicated genes over long periods of time is unknown. We investigate these questions experimentally by building strains carrying single and double gene deletions of duplicated genes and measuring their growth rates in rich medium. Using these data, we determine that many duplicated genes are functionally redundant to a substantial degree. We also investigate how often duplicated genes gain new functionality. We demonstrate that the fitness effects of double deletions of duplicate genes are indistinguishable from our best estimate of the fitness effects of deletions of their ancestral singleton genes. We therefore argue that many duplicate genes do not gain substantial new functionality at least in the rich medium. Our results suggest that subfunctionalization does not generally proceed to completion, even after very long periods of time, and that neofunctionalization is either rare or of little consequence, at least under some growth conditions.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Improved tools for biological sequence comparison.

          We have developed three computer programs for comparisons of protein and DNA sequences. They can be used to search sequence data bases, evaluate similarity scores, and identify periodic structures based on local sequence similarity. The FASTA program is a more sensitive derivative of the FASTP program, which can be used to search protein or DNA sequence data bases and can compare a protein sequence to a DNA sequence data base by translating the DNA data base as it is searched. FASTA includes an additional step in the calculation of the initial pairwise similarity score that allows multiple regions of similarity to be joined to increase the score of related sequences. The RDF2 program can be used to evaluate the significance of similarity scores using a shuffling method that preserves local sequence composition. The LFASTA program can display all the regions of local similarity between two sequences with scores greater than a threshold, using the same scoring parameters and a similar alignment algorithm; these local similarities can be displayed as a "graphic matrix" plot or as individual alignments. In addition, these programs have been generalized to allow comparison of DNA or protein sequences based on a variety of alternative scoring matrices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae.

            Disruption-deletion cassettes are powerful tools used to study gene function in many organisms, including Saccharomyces cerevisiae. Perhaps the most widely useful of these are the heterologous dominant drug resistance cassettes, which use antibiotic resistance genes from bacteria and fungi as selectable markers. We have created three new dominant drug resistance cassettes by replacing the kanamycin resistance (kan(r)) open reading frame from the kanMX3 and kanMX4 disruption-deletion cassettes (Wach et al., 1994) with open reading frames conferring resistance to the antibiotics hygromycin B (hph), nourseothricin (nat) and bialaphos (pat). The new cassettes, pAG25 (natMX4), pAG29 (patMX4), pAG31 (patMX3), pAG32 (hphMX4), pAG34 (hphMX3) and pAG35 (natMX3), are cloned into pFA6, and so are in all other respects identical to pFA6-kanMX3 and pFA6-kanMX4. Most tools and techniques used with the kanMX plasmids can also be used with the hph, nat and patMX containing plasmids. These new heterologous dominant drug resistance cassettes have unique antibiotic resistance phenotypes and do not affect growth when inserted into the ho locus. These attributes make the cassettes ideally suited for creating S. cerevisiae strains with multiple mutations within a single strain. Copyright 1999 John Wiley & Sons, Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A new efficient gene disruption cassette for repeated use in budding yeast.

              The dominant kanr marker gene plays an important role in gene disruption experiments in budding yeast, as this marker can be used in a variety of yeast strains lacking the conventional yeast markers. We have developed a loxP-kanMX-loxP gene disruption cassette, which combines the advantages of the heterologous kanr marker with those from the Cre-lox P recombination system. This disruption cassette integrates with high efficiency via homologous integration at the correct genomic locus (routinely 70%). Upon expression of the Cre recombinase the kanMX module is excised by an efficient recombination between the loxP sites, leaving behind a single loxP site at the chromosomal locus. This system allows repeated use of the kanr marker gene and will be of great advantage for the functional analysis of gene families.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                July 2008
                July 2008
                4 July 2008
                : 4
                : 7
                : e1000113
                Affiliations
                [1 ]Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Stanford, California, United States of America
                [2 ]Department of Biological Sciences, Stanford University, Stanford, California, United States of America
                University of Oxford, United Kingdom
                Author notes

                Conceived and designed the experiments: EJD JD DP. Performed the experiments: EJD JD. Analyzed the data: EJD JD DP. Contributed reagents/materials/analysis tools: RD DP. Wrote the paper: EJD JD DP.

                Article
                07-PLGE-RA-0683R3
                10.1371/journal.pgen.1000113
                2440806
                18604285
                fb402459-dcf7-4d6a-9dc3-8ca90efad764
                Dean et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 22 August 2007
                : 30 May 2008
                Page count
                Pages: 11
                Categories
                Research Article
                Evolutionary Biology/Bioinformatics
                Evolutionary Biology/Genomics
                Evolutionary Biology/Microbial Evolution and Genomics
                Genetics and Genomics/Functional Genomics
                Genetics and Genomics/Genomics

                Genetics
                Genetics

                Comments

                Comment on this article