85
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Crystal structures of the tRNA:m 2G6 methyltransferase Trm14/TrmN from two domains of life

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Methyltransferases (MTases) form a major class of tRNA-modifying enzymes needed for the proper functioning of tRNA. Recently, RNA MTases from the TrmN/Trm14 family that are present in Archaea, Bacteria and Eukaryota have been shown to specifically modify tRNA Phe at guanosine 6 in the tRNA acceptor stem. Here, we report the first X-ray crystal structures of the tRNA m 2G6 ( N 2-methylguanosine) MTase TTCTrmN from Thermus thermophilus and its ortholog PfTrm14 from Pyrococcus furiosus. Structures of PfTrm14 were solved in complex with the methyl donor S-adenosyl- l-methionine (SAM or AdoMet), as well as the reaction product S-adenosyl-homocysteine (SAH or AdoHcy) and the inhibitor sinefungin. TTCTrmN and PfTrm14 consist of an N-terminal THUMP domain fused to a catalytic Rossmann-fold MTase (RFM) domain. These results represent the first crystallographic structure analysis of proteins containing both THUMP and RFM domain, and hence provide further insight in the contribution of the THUMP domain in tRNA recognition and catalysis. Electrostatics and conservation calculations suggest a main tRNA binding surface in a groove between the THUMP domain and the MTase domain. This is further supported by a docking model of TrmN in complex with tRNA Phe of T. thermophilus and via site-directed mutagenesis.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          tRNAdb 2009: compilation of tRNA sequences and tRNA genes

          One of the first specialized collections of nucleic acid sequences in life sciences was the ‘compilation of tRNA sequences and sequences of tRNA genes’ (http://www.trna.uni-bayreuth.de). Here, an updated and completely restructured version of this compilation is presented (http://trnadb.bioinf.uni-leipzig.de). The new database, tRNAdb, is hosted and maintained in cooperation between the universities of Leipzig, Marburg, and Strasbourg. Reimplemented as a relational database, tRNAdb will be updated periodically and is searchable in a highly flexible and user-friendly way. Currently, it contains more than 12 000 tRNA genes, classified into families according to amino acid specificity. Furthermore, the implementation of the NCBI taxonomy tree facilitates phylogeny-related queries. The database provides various services including graphical representations of tRNA secondary structures, a customizable output of aligned or un-aligned sequences with a variety of individual and combinable search criteria, as well as the construction of consensus sequences for any selected set of tRNAs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Optimal description of a protein structure in terms of multiple groups undergoing TLS motion.

            A single protein crystal structure contains information about dynamic properties of the protein as well as providing a static view of one three-dimensional conformation. This additional information is to be found in the distribution of observed electron density about the mean position of each atom. It is general practice to account for this by refining a separate atomic displacement parameter (ADP) for each atomic center. However, these same displacements are often described well by simpler models based on TLS (translation/libration/screw) rigid-body motion of large groups of atoms, for example interdomain hinge motion. A procedure, TLSMD, has been developed that analyzes the distribution of ADPs in a previously refined protein crystal structure in order to generate optimal multi-group TLS descriptions of the constituent protein chains. TLSMD is applicable to crystal structures at any resolution. The models generated by TLSMD analysis can significantly improve the standard crystallographic residuals R and R(free) and can reveal intrinsic dynamic properties of the protein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Substructure solution with SHELXD.

              Iterative dual-space direct methods based on phase refinement in reciprocal space and peak picking in real space are able to locate relatively large numbers of anomalous scatterers efficiently from MAD or SAD data. Truncation of the data at a particular resolution, typically in the range 3.0-3.5 A, can be critical to success. The efficiency can be improved by roughly an order of magnitude by Patterson-based seeding instead of starting from random phases or sites; Patterson superposition methods also provide useful validation. The program SHELXD implementing this approach is available as part of the SHELX package.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                June 2012
                June 2012
                22 February 2012
                22 February 2012
                : 40
                : 11
                : 5149-5161
                Affiliations
                1VIB Department of Structural Biology, 2Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium, 3Institut de Recherches Microbiologiques Jean-Marie Wiame, Ave E. Gryson 1, 1070 Bruxelles, Belgium, 4International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4 St, 02-109 Warsaw, 5Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland and 6Laboratoire de Microbiologie, Université Libre de Bruxelles (ULB), Ave E. Gryson 1, 1070 Bruxelles, Belgium
                Author notes
                *To whom correspondence should be addressed. Tel: +32 26291849; Fax: +32 26291963; Email: wim.versees@ 123456vib-vub.be
                Article
                gks163
                10.1093/nar/gks163
                3367198
                22362751
                fb41a64e-3227-4c1e-bad3-1f84f5331310
                © The Author(s) 2012. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 September 2011
                : 16 January 2012
                : 30 January 2012
                Page count
                Pages: 13
                Categories
                Structural Biology

                Genetics
                Genetics

                Comments

                Comment on this article