50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Different Topological Properties of EEG-Derived Networks Describe Working Memory Phases as Revealed by Graph Theoretical Analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several non-invasive imaging methods have contributed to shed light on the brain mechanisms underlying working memory (WM). The aim of the present study was to depict the topology of the relevant EEG-derived brain networks associated to distinct operations of WM function elicited by the Sternberg Item Recognition Task (SIRT) such as encoding, storage, and retrieval in healthy, middle age (46 ± 5 years) adults. High density EEG recordings were performed in 17 participants whilst attending a visual SIRT. Neural correlates of WM were assessed by means of a combination of EEG signal processing methods (i.e., time-varying connectivity estimation and graph theory), in order to extract synthetic descriptors of the complex networks underlying the encoding, storage, and retrieval phases of WM construct. The group analysis revealed that the encoding phase exhibited a significantly higher small-world topology of EEG networks with respect to storage and retrieval in all EEG frequency oscillations, thus indicating that during the encoding of items the global network organization could “ optimally” promote the information flow between WM sub-networks. We also found that the magnitude of such configuration could predict subject behavioral performance when memory load increases as indicated by the negative correlation between Reaction Time and the local efficiency values estimated during the encoding in the alpha band in both 4 and 6 digits conditions. At the local scale, the values of the degree index which measures the degree of in- and out- information flow between scalp areas were found to specifically distinguish the hubs within the relevant sub-networks associated to each of the three different WM phases, according to the different role of the sub-network of regions in the different WM phases. Our findings indicate that the use of EEG-derived connectivity measures and their related topological indices might offer a reliable and yet affordable approach to monitor WM components and thus theoretically support the clinical assessment of cognitive functions in presence of WM decline/impairment, as it occurs after stroke.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          Alpha-band oscillations, attention, and controlled access to stored information

          Alpha-band oscillations are the dominant oscillations in the human brain and recent evidence suggests that they have an inhibitory function. Nonetheless, there is little doubt that alpha-band oscillations also play an active role in information processing. In this article, I suggest that alpha-band oscillations have two roles (inhibition and timing) that are closely linked to two fundamental functions of attention (suppression and selection), which enable controlled knowledge access and semantic orientation (the ability to be consciously oriented in time, space, and context). As such, alpha-band oscillations reflect one of the most basic cognitive processes and can also be shown to play a key role in the coalescence of brain activity in different frequencies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis.

            Evidence is presented that EEG oscillations in the alpha and theta band reflect cognitive and memory performance in particular. Good performance is related to two types of EEG phenomena (i) a tonic increase in alpha but a decrease in theta power, and (ii) a large phasic (event-related) decrease in alpha but increase in theta, depending on the type of memory demands. Because alpha frequency shows large interindividual differences which are related to age and memory performance, this double dissociation between alpha vs. theta and tonic vs. phasic changes can be observed only if fixed frequency bands are abandoned. It is suggested to adjust the frequency windows of alpha and theta for each subject by using individual alpha frequency as an anchor point. Based on this procedure, a consistent interpretation of a variety of findings is made possible. As an example, in a similar way as brain volume does, upper alpha power increases (but theta power decreases) from early childhood to adulthood, whereas the opposite holds true for the late part of the lifespan. Alpha power is lowered and theta power enhanced in subjects with a variety of different neurological disorders. Furthermore, after sustained wakefulness and during the transition from waking to sleeping when the ability to respond to external stimuli ceases, upper alpha power decreases, whereas theta increases. Event-related changes indicate that the extent of upper alpha desynchronization is positively correlated with (semantic) long-term memory performance, whereas theta synchronization is positively correlated with the ability to encode new information. The reviewed findings are interpreted on the basis of brain oscillations. It is suggested that the encoding of new information is reflected by theta oscillations in hippocampo-cortical feedback loops, whereas search and retrieval processes in (semantic) long-term memory are reflected by upper alpha oscillations in thalamo-cortical feedback loops. Copyright 1999 Elsevier Science B.V.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Working Memory: Theories, Models, and Controversies

              I present an account of the origins and development of the multicomponent approach to working memory, making a distinction between the overall theoretical framework, which has remained relatively stable, and the attempts to build more specific models within this framework. I follow this with a brief discussion of alternative models and their relationship to the framework. I conclude with speculations on further developments and a comment on the value of attempting to apply models and theories beyond the laboratory studies on which they are typically based.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                12 January 2018
                2017
                : 11
                : 637
                Affiliations
                [1] 1Department of Computer, Control and Management Engineering, Sapienza University of Rome , Rome, Italy
                [2] 2Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS , Rome, Italy
                [3] 3Department of Psychology, University of Graz , Graz, Austria
                [4] 4BioTechMed-Graz , Graz, Austria
                Author notes

                Edited by: Felix Putze, University of Bremen, Germany

                Reviewed by: Márk Molnár, Institute of Cognitive Neuroscience and Psychology, Centre of Natural Sciences (HAS), Hungary; Birgit Mathes, University of Bremen, Germany

                *Correspondence: Donatella Mattia d.mattia@ 123456hsantalucia.it
                Article
                10.3389/fnhum.2017.00637
                5770976
                29379425
                fb5d0787-1dc3-4762-a40e-83cf7d78b5e3
                Copyright © 2018 Toppi, Astolfi, Risetti, Anzolin, Kober, Wood and Mattia.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 August 2017
                : 14 December 2017
                Page count
                Figures: 4, Tables: 4, Equations: 5, References: 130, Pages: 16, Words: 12128
                Categories
                Neuroscience
                Original Research

                Neurosciences
                eeg,brain networks,working memory,sternberg task,connectivity,graph theory
                Neurosciences
                eeg, brain networks, working memory, sternberg task, connectivity, graph theory

                Comments

                Comment on this article