85
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mortality and Hospital Stay Associated with Resistant Staphylococcus aureus and Escherichia coli Bacteremia: Estimating the Burden of Antibiotic Resistance in Europe

      research-article
      1 , 2 , * , 3 , 1 , 2 , on behalf of the BURDEN study group
      PLoS Medicine
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The authors calculate excess mortality, excess hospital stay, and related hospital expenditure associated with antibiotic-resistant bacterial bloodstream infections ( Staphylococcus aureus and Escherichia coli) in Europe.

          Abstract

          Background

          The relative importance of human diseases is conventionally assessed by cause-specific mortality, morbidity, and economic impact. Current estimates for infections caused by antibiotic-resistant bacteria are not sufficiently supported by quantitative empirical data. This study determined the excess number of deaths, bed-days, and hospital costs associated with blood stream infections (BSIs) caused by methicillin-resistant Staphylococcus aureus (MRSA) and third-generation cephalosporin-resistant Escherichia coli (G3CREC) in 31 countries that participated in the European Antimicrobial Resistance Surveillance System (EARSS).

          Methods and Findings

          The number of BSIs caused by MRSA and G3CREC was extrapolated from EARSS prevalence data and national health care statistics. Prospective cohort studies, carried out in hospitals participating in EARSS in 2007, provided the parameters for estimating the excess 30-d mortality and hospital stay associated with BSIs caused by either MRSA or G3CREC. Hospital expenditure was derived from a publicly available cost model. Trends established by EARSS were used to determine the trajectories for MRSA and G3CREC prevalence until 2015. In 2007, 27,711 episodes of MRSA BSIs were associated with 5,503 excess deaths and 255,683 excess hospital days in the participating countries, whereas 15,183 episodes of G3CREC BSIs were associated with 2,712 excess deaths and 120,065 extra hospital days. The total costs attributable to excess hospital stays for MRSA and G3CREC BSIs were 44.0 and 18.1 million Euros (63.1 and 29.7 million international dollars), respectively. Based on prevailing trends, the number of BSIs caused by G3CREC is likely to rapidly increase, outnumbering the number of MRSA BSIs in the near future.

          Conclusions

          Excess mortality associated with BSIs caused by MRSA and G3CREC is significant, and the prolongation of hospital stay imposes a considerable burden on health care systems. A foreseeable shift in the burden of antibiotic resistance from Gram-positive to Gram-negative infections will exacerbate this situation and is reason for concern.

          Please see later in the article for the Editors' Summary

          Editors' Summary

          Background

          Antimicrobial resistance—a consequence of the use and misuse of antimicrobial medicines—occurs when a microorganism becomes resistant (usually by mutation or acquiring a resistance gene) to an antimicrobial drug to which it was previously sensitive. Then standard treatments become ineffective, leading to persistent infections, which may spread to other people. With some notable exceptions such as TB, HIV, malaria, and gonorrhea, most of the disease burden attributable to antimicrobial resistance is caused by hospital-associated infections due to opportunistic bacterial pathogens. These bacteria often cause life-threatening or difficult-to-manage conditions such as deep tissue, wound, or bone infections, or infections of the lower respiratory tract, central nervous system, or blood stream. The two most frequent causes of blood stream infections encountered worldwide are Staphylococcus aureus and Escherichia coli.

          Why Was This Study Done?

          Although hospital-associated infections have gained much attention over the past decade, the overall effect of this growing phenomenon on human health and medical services has still to be adequately quantified. The researchers proposed to fill this information gap by estimating the impact—morbidity, mortality, and demands on health care services—of antibiotic resistance in Europe for two types of resistant organisms that are typically associated with resistance to multiple classes of antibiotics and can be regarded as surrogate markers for multi-drug resistance—methicillin-resistant S. aureus and third-generation cephalosporin-resistant E. coli.

          What Did the Researchers Do and Find?

          Recently, the Burden of Resistance and Disease in European Nations project collected representative data on the clinical impact of antimicrobial resistance throughout Europe. Using and combining this information with 2007 prevalence data from the European Antibiotic Resistance Surveillance System, the researchers calculated the burden of disease associated with methicillin-resistant S. aureus and third-generation cephalosporin-resistant E. coli blood stream infections. This burden of disease was expressed as excess number of deaths, excess number of days in hospital, and excess costs. Using statistical models, the researchers predicted trend-based resistance trajectories up to 2015 for the 31 participating countries in the European region.

          The researchers included 1,293 hospitals from the 31 countries, typically covering 47% of all available acute care hospital beds in most countries, in their analysis. For S. aureus, the estimated number of blood stream infections totaled 108,434, of which 27,711 (25.6%) were methicillin-resistant. E. coli caused 163,476 blood stream infections, of which 15,183 (9.3%) were resistant to third-generation cephalosporins. An estimated 5,503 excess deaths were associated with blood stream infections caused by methicillin-resistant S. aureus (with the UK and France predicted to experience the highest excess mortality), and 2,712 excess deaths with blood stream infections caused by third-generation cephalosporin-resistant E. coli (predicted to be the highest in Turkey and the UK). The researchers also found that blood stream infections caused by both methicillin-resistant S. aureus and third-generation cephalosporin-resistant E. coli contributed respective excesses of 255,683 and 120,065 extra bed-days, accounting for an estimated extra cost of 62.0 million Euros (92.8 million international dollars). In their trend analysis, the researchers found that 97,000 resistant blood stream infections and 17,000 associated deaths could be expected in 2015, along with increases in the lengths of hospital stays and costs. Importantly, the researchers estimated that in the near future, the burden of disease associated with third-generation cephalosporin-resistant E. coli is likely to surpass that associated with methicillin-resistant S. aureus.

          What Do These Findings Mean?

          These findings show that even though the blood stream infections studied represent only a fraction of the total burden of disease associated with antibiotic resistance, excess mortality associated with these infections caused by methicillin-resistant S. aureus and third-generation cephalosporin-resistant E. coli is high, and the associated prolonged length of stays in hospital imposes a considerable burden on health care systems in Europe. Importantly, a possible shift in the burden of antibiotic resistance from Gram-positive to Gram-negative infections is concerning. Such forecasts suggest that despite anticipated gains in the control of methicillin-resistant S. aureus, the increasing number of infections caused by third-generation cephalosporin-resistant Gram-negative pathogens, such as E. coli, is likely to outweigh this achievement soon. This increasing burden will have a big impact on already stretched health systems.

          Additional Information

          Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001104.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study

          Summary Background Gram-negative Enterobacteriaceae with resistance to carbapenem conferred by New Delhi metallo-β-lactamase 1 (NDM-1) are potentially a major global health problem. We investigated the prevalence of NDM-1, in multidrug-resistant Enterobacteriaceae in India, Pakistan, and the UK. Methods Enterobacteriaceae isolates were studied from two major centres in India—Chennai (south India), Haryana (north India)—and those referred to the UK's national reference laboratory. Antibiotic susceptibilities were assessed, and the presence of the carbapenem resistance gene bla NDM-1 was established by PCR. Isolates were typed by pulsed-field gel electrophoresis of XbaI-restricted genomic DNA. Plasmids were analysed by S1 nuclease digestion and PCR typing. Case data for UK patients were reviewed for evidence of travel and recent admission to hospitals in India or Pakistan. Findings We identified 44 isolates with NDM-1 in Chennai, 26 in Haryana, 37 in the UK, and 73 in other sites in India and Pakistan. NDM-1 was mostly found among Escherichia coli (36) and Klebsiella pneumoniae (111), which were highly resistant to all antibiotics except to tigecycline and colistin. K pneumoniae isolates from Haryana were clonal but NDM-1 producers from the UK and Chennai were clonally diverse. Most isolates carried the NDM-1 gene on plasmids: those from UK and Chennai were readily transferable whereas those from Haryana were not conjugative. Many of the UK NDM-1 positive patients had travelled to India or Pakistan within the past year, or had links with these countries. Interpretation The potential of NDM-1 to be a worldwide public health problem is great, and co-ordinated international surveillance is needed. Funding European Union, Wellcome Trust, and Wyeth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs.

            There is an association between the development of antimicrobial resistance in Staphylococcus aureus, enterococci, and gram-negative bacilli and increases in mortality, morbidity, length of hospitalization, and cost of health care. For many patients, inadequate or delayed therapy and severe underlying disease are primarily responsible for the adverse outcomes of infections caused by antimicrobial-resistant organisms. Patients with infections due to antimicrobial-resistant organisms have higher costs (approximately 6,000-30,000 dollars) than do patients with infections due to antimicrobial-susceptible organisms; the difference in cost is even greater when patients infected with antimicrobial-resistant organisms are compared with patients without infection. Strategies to prevent nosocomial emergence and spread of antimicrobial-resistant organisms are essential.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical outcomes of health-care-associated infections and antimicrobial resistance in patients admitted to European intensive-care units: a cohort study.

              Patients admitted to intensive-care units are at high risk of health-care-associated infections, and many are caused by antimicrobial-resistant pathogens. We aimed to assess excess mortality and length of stay in intensive-care units from bloodstream infections and pneumonia. We analysed data collected prospectively from intensive-care units that reported according to the European standard protocol for surveillance of health-care-associated infections. We focused on the most frequent causative microorganisms. Resistance was defined as resistance to ceftazidime (Acinetobacter baumannii or Pseudomonas aeruginosa), third-generation cephalosporins (Escherichia coli), and oxacillin (Staphylococcus aureus). We defined 20 different exposures according to infection site, microorganism, and resistance status. For every exposure, we compared outcomes between patients exposed and unexposed by use of time-dependent regression modelling. We adjusted results for patients' characteristics and time-dependency of the exposure. We obtained data for 119 699 patients who were admitted for more than 2 days to 537 intensive-care units in ten countries between Jan 1, 2005, and Dec 31, 2008. Excess risk of death (hazard ratio) for pneumonia in the fully adjusted model ranged from 1·7 (95% CI 1·4-1·9) for drug-sensitive S aureus to 3·5 (2·9-4·2) for drug-resistant P aeruginosa. For bloodstream infections, the excess risk ranged from 2·1 (1·6-2·6) for drug-sensitive S aureus to 4·0 (2·7-5·8) for drug-resistant P aeruginosa. Risk of death associated with antimicrobial resistance (ie, additional risk of death to that of the infection) was 1·2 (1·1-1·4) for pneumonia and 1·2 (0·9-1·5) for bloodstream infections for a combination of all four microorganisms, and was highest for S aureus (pneumonia 1·3 [1·0-1·6], bloodstream infections 1·6 [1·1-2·3]). Antimicrobial resistance did not significantly increase length of stay; the hazard ratio for discharge, dead or alive, for sensitive microorganisms compared with resistant microorganisms (all four combined) was 1·05 (0·97-1·13) for pneumonia and 1·02 (0·98-1·17) for bloodstream infections. P aeruginosa had the highest burden of health-care-acquired infections because of its high prevalence and pathogenicity of both its drug-sensitive and drug-resistant strains. Health-care-associated bloodstream infections and pneumonia greatly increase mortality and pneumonia increase length of stay in intensive-care units; the additional effect of the most common antimicrobial resistance patterns is comparatively low. European Commission (DG Sanco). Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                PLoS
                plosmed
                PLoS Medicine
                Public Library of Science (San Francisco, USA )
                1549-1277
                1549-1676
                October 2011
                October 2011
                11 October 2011
                : 8
                : 10
                : e1001104
                Affiliations
                [1 ]Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
                [2 ]Department of Medical Microbiology, Academic Medical Centre Groningen, Groningen, The Netherlands
                [3 ]Quality, Safety and Informatics Research Group, Dundee, United Kingdom
                Brown University School of Medicine, United States of America
                Author notes

                ICMJE criteria for authorship read and met: MdK PD HG. Agree with the manuscript's results and conclusions: MdK PD HG. Designed the experiments/the study: HG MdK PD. Analyzed the data: MdK. Wrote the first draft of the paper: MdK. Contributed to the writing of the paper: MdK HG PD.

                Article
                PMEDICINE-D-10-00710
                10.1371/journal.pmed.1001104
                3191157
                22022233
                fb5fc166-51df-48ce-aa3d-5bffd980f9f1
                de Kraker et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 10 December 2010
                : 24 August 2011
                Page count
                Pages: 8
                Categories
                Research Article
                Medicine
                Infectious Diseases
                Bacterial Diseases
                Bacteremia
                Bloodstream Infections
                Escherichia Coli
                Staphylococcus Aureus

                Medicine
                Medicine

                Comments

                Comment on this article