46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      EOS imaging versus current radiography: A health technology assessment study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: EOS is a 2D/3D muscle skeletal diagnostic imaging system. The device has been developed to produce a high quality 2D, full body radiographs in standing, sitting and squatting positions. Three dimensional images can be reconstructed via sterEOS software. This Health Technology Assessment study aimed to investigate efficacy, effectiveness and cost-effectiveness of new emerged EOS imaging system in comparison with conventional x-ray radiographic techniques.

          Methods: All cost and outcome data were assessed from Iran's Ministry of Health Perspective. Data for clinical effectiveness was extracted using a rigorous systematic review. As clinical outcomes the rate of x-ray emission and related quality of life were compared with Computed Radiography (CR) and Digital Radiography (DR). Standard costing method was conducted to find related direct medical costs. In order to examine robustness of the calculated Incremental Cost Effectiveness Ratios (ICERs) we used two-way sensitivity analysis. GDP Per capita of Islamic Republic of Iran (2012) adopted as cost-effectiveness threshold.

          Results: Review of related literature highlighted the lack of rigorous evidence for clinical outcomes. Ultra low dose EOS imaging device is known as a safe intervention because of FDA, CE and CSA certificates. The rate of emitted X-ray was 2 to 18 fold lower for EOS compared to the conventional techniques (p<0.001). The Incremental Cost Effectiveness Ratio for EOS relative to CR calculated $50706 in baseline analysis (the first scenario) and $50714, $9446 respectively for the second and third scenarios. Considering the value of neither $42146 as upper limit, nor the first neither the second scenario could pass the cost-effectiveness threshold for Iran.

          Conclusion: EOS imaging technique might not be considered as a cost-effective intervention in routine practice of health system, especially within in-patient wards. Scenario analysis shows that, only in an optimum condition such as lower assembling costs and higher utilization rates, the device can be recruited for research and therapeutic purposes in pediatric orthopedic centers.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Differences in male and female spino-pelvic alignment in asymptomatic young adults: a three-dimensional analysis using upright low-dose digital biplanar X-rays.

          A three-dimensional analysis of spino-pelvic alignment in 60 asymptomatic young adult males and females. To analyze the differences in sagittal spino-pelvic alignment in a group of asymptomatic young adult males and females and describe gender specific reference values. Several spinal disorders like idiopathic scoliosis and Scheuermann's disease have a well-known sex-related prevalence ratio. As spino-pelvic alignment plays an important role in spinal biomechanics, it is imperative to analyze possible differences between the male and female spino-pelvic alignment. Furthermore, in spinal fusion surgery, normal sagittal balance should be recreated as closely as possible. An innovative biplanar ultra low-dose radiographic technique was used to obtain three-dimensional reconstructions of the spine (T1-L5), sacrum, and pelvis in a freestanding position of 30 asymptomatic young male and 30 young female adults. Values were calculated for thoracic kyphosis (T4-T12), lumbar lordosis (L1-S1), total and regional lumbopelvic lordosis (PRT12, PRL2, PRL4, and PRL5), sagittal plumb line of T1, T4, and T9 (HAT1, HAT4, and HAT9), T1-L5 sagittal spinal inclination, T9 sagittal offset, and pelvic parameters (pelvic tilt, sacral slope, and pelvic incidence). In addition, vertebral inclination in the sagittal plane of each vertebra was measured. Differences in spino-pelvic alignment between the sexes were analyzed. The female spine was more dorsally inclined (11 degrees vs. 8 degrees ; P = 0.003). High thoracic and thoracolumbar vertebrae were more dorsally inclined in women than in men. Thoracic kyphosis, lumbar lordosis, regional lumbopelvic lordosis, sagittal plumb lines, T9 sagittal offset, and pelvic parameters were not statistically different between the sexes. These results indicate that the female spine is definitely different from the male spine. The spine as whole and individual vertebrae in certain regions of the normal spine is more backwardly inclined in females than in males. Based on our previous research this signifies that these spinal regions are subjected to different biomechanical loading conditions. These vertebral segments are possibly less rotationally stable in females than in males.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The EOS™ imaging system and its uses in daily orthopaedic practice.

            The EOS™ X-ray machine, based on a Nobel prize-winning invention in physics in the field of particle detection, is capable of a simultaneous capture of biplanar X-ray images by slot scanning of the whole body in an upright, physiological load-bearing position, using ultra-low radiation doses. The simultaneous capture of spatially calibrated anterioposterior and lateral images provides a three-dimensional (3D) surface reconstruction of the skeletal system using a special software. Parts of the skeletal system in X-ray images and 3D-reconstructed models appear in true 1:1 scale for size and volume, thus spinal and vertebral parameters, lower limb axis lengths and angles, as well as any relevant clinical parameters in orthopaedic practice can be very precisely measured and calculated. Visualisation of 3D reconstructed models in various views by sterEOS 3D software enables presentation of top view images to help analyse rotational conditions of lower limbs, joints and spine deformities in the horizontal plane, providing revolutionary novel possibilities in orthopaedic surgery, especially in spine surgery. Our department has been extensively using the very first commercially available EOS™ imaging system worldwide for routine orthopaedic diagnostics since June 2007. During this period of about 4.5 years, more than 5,700 standard examinations have been carried out, about a third of them in spine deformity cases and the rest in lower limb orthopaedic cases. In this mini-review, general principles and uses of this groundbreaking integrated orthopaedic solution is reviewed with a few highlighted examples from our own clinical practice.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The 2007 recommendations of the international commission on radiological protection ICRP publication 103 Ann

                Bookmark

                Author and article information

                Journal
                Med J Islam Repub Iran
                Med J Islam Repub Iran
                MJIRI
                Med J Islam Repub Iran
                Medical Journal of the Islamic Republic of Iran
                Iran University of Medical Sciences
                1016-1430
                2251-6840
                2016
                17 February 2016
                : 30
                : 331
                Affiliations
                1 PhD of Health Economics, Iranian Center of Excellence in Health Management, Department of Health Service Management, Tabriz University of Medical Sciences, Tabriz, Iran. aharia@ 123456tbzmed.ac.ir
                2 Professor of Urology, Iranian Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. ebrahimis@ 123456tbzmed.ac.ir
                3 PhD of Health Economics, Iranian Center of Excellence in Health Management, Department of Health Service Management, Tabriz University of Medical Sciences, Tabriz, Iran. mahmood_bey@ 123456yahoo.com
                4 MSc of Health Technology Assessment, Department of Educational Management, Economics and Policy, School of Medical Education, Shahid Beheshti University of Medical Sciences, Tehran, Iran. a.velayati@ 123456sbmu.ac.ir
                Author notes
                (Corresponding author) MSc of Health Technology Assessment, Department of Educational Management, Economics and Policy, School of Medical Education, Shahid Beheshti University of Medical Sciences, Tehran, Iran. a.velayati@ 123456sbmu.ac.ir
                Article
                4898869
                27390701
                fb61a631-3632-4ed1-bf48-0a34d880a72a
                © 2016 Iran University of Medical Sciences

                This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial 3.0 License (CC BY-NC 3.0), which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

                History
                : 10 September 2015
                : 11 November 2015
                Page count
                Figures: 1, Tables: 2, References: 48, Pages: 8
                Categories
                Original Article

                eos imaging,radiography,health technology assessment,cost-effectiveness

                Comments

                Comment on this article