+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Heterogeneity of porcine reproductive and respiratory syndrome virus: implications for current vaccine efficacy and future vaccine development

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a major problem to the pork industry worldwide. Increasing data indicate that PRRSV strains differ in virulence in infected pigs and are biologically, antigenically, and genetically heterogeneous. It is evident that the current vaccines, based on a single PRRSV strain, are not effective in protecting against infections with the genetically diverse field strains of PRRSV. The recent outbreaks of atypical or acute PRRS in vaccinated pigs have raised a serious concern about the efficacy of the current vaccines and provided the impetus for developing more effective vaccines. Special attention in this review is given to published work on antigenic, pathogenic and genetic variations of PRRSV and its potential implications for vaccine efficacy and development. Although there are ample data documenting the heterogeneous nature of PRRSV strains, information regarding how the heterogeneity is generated and what clinical impact it may have is very scarce. The observed heterogeneity will likely pose a major obstacle for effective prevention and control of PRRS. There remains an urgent need for fundamental research on this virus to understand the basic biology and the mechanism of heterogeneity and pathogenesis of PRRSV.

          Related collections

          Most cited references 120

          • Record: found
          • Abstract: not found
          • Article: not found

          Nidovirales: a new order comprising Coronaviridae and Arteriviridae.

           D Cavanagh (1996)
            • Record: found
            • Abstract: found
            • Article: not found

            Mystery swine disease in The Netherlands: the isolation of Lelystad virus.

            In early 1991, the Dutch pig-industry was struck by the so-called mystery swine disease. Large-scale laboratory investigations were undertaken to search for the etiological agent. We focused on isolating viruses and mycoplasmas, and we tested paired sera of affected sows for antibodies against ten known pig viruses. The mycoplasmas M. hyosynoviae, M. hyopneumoniae, and Acholeplasma laidlawii, and the viruses encephalomyocarditis virus and porcine enterovirus types 2 and 7 were isolated from individual pigs. An unknown agent, however, was isolated from 16 of 20 piglets and from 41 of 63 sows. This agent was characterised as a virus and designated Lelystad virus. No relationship between this virus and other viruses has yet been established. Of 165 sows reportedly afflicted by the disease, 123 (75 per cent) seroconverted to Lelystad virus, whereas less than 10 per cent seroconverted to any of the other virus isolates or to the known viral pathogens. Antibodies directed against Lelystad virus were also found in pigs with mystery swine disease in England, Germany, and in the United States. We conclude that infection with Lelystad virus is the likely cause of mystery swine disease.
              • Record: found
              • Abstract: found
              • Article: not found

              The Molecular Biology of Coronaviruses

              Publisher Summary This chapter discusses the manipulation of clones of coronavirus and of complementary DNAs (cDNAs) of defective-interfering (DI) RNAs to study coronavirus RNA replication, transcription, recombination, processing and transport of proteins, virion assembly, identification of cell receptors for coronaviruses, and processing of the polymerase. The nature of the coronavirus genome is nonsegmented, single-stranded, and positive-sense RNA. Its size ranges from 27 to 32 kb, which is significantly larger when compared with other RNA viruses. The gene encoding the large surface glycoprotein is up to 4.4 kb, encoding an imposing trimeric, highly glycosylated protein. This soars some 20 nm above the virion envelope, giving the virus the appearance-with a little imagination-of a crown or coronet. Coronavirus research has contributed to the understanding of many aspects of molecular biology in general, such as the mechanism of RNA synthesis, translational control, and protein transport and processing. It remains a treasure capable of generating unexpected insights.

                Author and article information

                Vet Microbiol
                Vet. Microbiol
                Veterinary Microbiology
                Elsevier Science B.V.
                19 May 2000
                12 June 2000
                19 May 2000
                : 74
                : 4
                : 309-329
                Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1410 Price’s Fork Road, Blacksburg, VA 24061-0342, USA
                Author notes
                [* ]Tel.: +1-540-231-6912; fax: +1-540-231-3426 xjmeng@
                Copyright © 2000 Elsevier Science B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.



                Comment on this article