113
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      In pursuit of P2X3 antagonists: novel therapeutics for chronic pain and afferent sensitization

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Treating pain by inhibiting ATP activation of P2X3-containing receptors heralds an exciting new approach to pain management, and Afferent's program marks the vanguard in a new class of drugs poised to explore this approach to meet the significant unmet needs in pain management. P2X3 receptor subunits are expressed predominately and selectively in so-called C- and Aδ-fiber primary afferent neurons in most tissues and organ systems, including skin, joints, and hollow organs, suggesting a high degree of specificity to the pain sensing system in the human body. P2X3 antagonists block the activation of these fibers by ATP and stand to offer an alternative approach to the management of pain and discomfort. In addition, P2X3 is expressed pre-synaptically at central terminals of C-fiber afferent neurons, where ATP further sensitizes transmission of painful signals. As a result of the selectivity of the expression of P2X3, there is a lower likelihood of adverse effects in the brain, gastrointestinal, or cardiovascular tissues, effects which remain limiting factors for many existing pain therapeutics. In the periphery, ATP (the factor that triggers P2X3 receptor activation) can be released from various cells as a result of tissue inflammation, injury or stress, as well as visceral organ distension, and stimulate these local nociceptors. The P2X3 receptor rationale has aroused a formidable level of investigation producing many reports that clarify the potential role of ATP as a pain mediator, in chronic sensitized states in particular, and has piqued the interest of pharmaceutical companies. P2X receptor-mediated afferent activation has been implicated in inflammatory, visceral, and neuropathic pain states, as well as in airways hyperreactivity, migraine, itch, and cancer pain. It is well appreciated that oftentimes new mechanisms translate poorly from models into clinical efficacy and effectiveness; however, the breadth of activity seen from P2X3 inhibition in models offers a realistic chance that this novel mechanism to inhibit afferent nerve sensitization may find its place in the sun and bring some merciful relief to the torment of persistent discomfort and pain. The development philosophy at Afferent is to conduct proof of concept patient studies and best identify target patient groups that may benefit from this new intervention.

          Related collections

          Most cited references159

          • Record: found
          • Abstract: found
          • Article: not found

          Increased Level of Extracellular ATP at Tumor Sites: In Vivo Imaging with Plasma Membrane Luciferase

          Background There is growing awareness that tumour cells build up a “self-advantageous” microenvironment that reduces effectiveness of anti-tumour immune response. While many different immunosuppressive mechanisms are likely to come into play, recent evidence suggests that extracellular adenosine acting at A2A receptors may have a major role in down-modulating the immune response as cancerous tissues contain elevated levels of adenosine and adenosine break-down products. While there is no doubt that all cells possess plasma membrane adenosine transporters that mediate adenosine uptake and may also allow its release, it is now clear that most of extracellularly-generated adenosine originates from the catabolism of extracellular ATP. Methodology/Principal Findings Measurement of extracellular ATP is generally performed in cell supernatants by HPLC or soluble luciferin-luciferase assay, thus it generally turns out to be laborious and inaccurate. We have engineered a chimeric plasma membrane-targeted luciferase that allows in vivo real-time imaging of extracellular ATP. With this novel probe we have measured the ATP concentration within the tumour microenvironment of several experimentally-induced tumours. Conclusions/Significance Our results show that ATP in the tumour interstitium is in the hundrends micromolar range, while it is basically undetectable in healthy tissues. Here we show that a chimeric plasma membrane-targeted luciferase allows in vivo detection of high extracellular ATP concentration at tumour sites. On the contrary, tumour-free tissues show undetectable extracellular ATP levels. Extracellular ATP may be crucial for the tumour not only as a stimulus for growth but also as a source of an immunosuppressive agent such as adenosine. Our approach offers a new tool for the investigation of the biochemical composition of tumour milieu and for development of novel therapies based on the modulation of extracellular purine-based signalling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd.

            The brain receives sensory input from diverse peripheral tissues, including the skin, the body's largest sensory organ. Using genetically encoded axonal tracers expressed from the Mrgprd locus, we identify a subpopulation of nonpeptidergic, nociceptive neurons that project exclusively to the skin, and to no other peripheral tissue examined. Surprisingly, Mrgprd(+) innervation is restricted to the epidermis and absent from specialized sensory structures. Furthermore, Mrgprd(+) fibers terminate in a specific layer of the epidermis, the stratum granulosum. This termination zone is distinct from that innervated by most CGRP(+) neurons, revealing that peptidergic and nonpeptidergic epidermal innervation is spatially segregated. The central projections deriving from these distinct epidermal innervation zones terminate in adjacent laminae in the dorsal spinal cord. Thus, afferent input from different layers of the epidermis is conveyed by topographically segregated sensory circuits, suggesting that at least some aspects of sensory information processing may be organized along labeled lines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ATP signaling is crucial for communication from taste buds to gustatory nerves.

              Taste receptor cells detect chemicals in the oral cavity and transmit this information to taste nerves, but the neurotransmitter(s) have not been identified. We report that adenosine 5'-triphosphate (ATP) is the key neurotransmitter in this system. Genetic elimination of ionotropic purinergic receptors (P2X2 and P2X3) eliminates taste responses in the taste nerves, although the nerves remain responsive to touch, temperature, and menthol. Similarly, P2X-knockout mice show greatly reduced behavioral responses to sweeteners, glutamate, and bitter substances. Finally, stimulation of taste buds in vitro evokes release of ATP. Thus, ATP fulfils the criteria for a neurotransmitter linking taste buds to the nervous system.
                Bookmark

                Author and article information

                Contributors
                AF@AfferentPharma.com
                Journal
                Purinergic Signal
                Purinergic Signalling
                Springer Netherlands (Dordrecht )
                1573-9538
                1573-9546
                18 November 2011
                18 November 2011
                February 2012
                : 8
                : Suppl 1
                : 3-26
                Affiliations
                Afferent Pharmaceuticals, 2755 Campus Dr., Suite 100, San Mateo, CA 94403 USA
                Article
                9271
                10.1007/s11302-011-9271-6
                3265711
                22095157
                fb7511ad-646a-4a84-842e-cca6a1b18a4e
                © The Author(s) 2011
                History
                : 27 July 2011
                : 19 September 2011
                Categories
                Original Article
                Custom metadata
                © Springer Science+Business Media B.V. 2012

                Cell biology
                p2x3 receptor,p2x2/3 receptor,analgesic,joint pain,anti-hyperalgesic,p2x3 antagonist,visceral pain,neuropathic pain

                Comments

                Comment on this article