Blog
About

3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Guest editorial brain-computer interface technology: a review of the second international meeting

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 42

          • Record: found
          • Abstract: found
          • Article: not found

          BCI2000: a general-purpose brain-computer interface (BCI) system.

          Many laboratories have begun to develop brain-computer interface (BCI) systems that provide communication and control capabilities to people with severe motor disabilities. Further progress and realization of practical applications depends on systematic evaluations and comparisons of different brain signals, recording methods, processing algorithms, output formats, and operating protocols. However, the typical BCI system is designed specifically for one particular BCI method and is, therefore, not suited to the systematic studies that are essential for continued progress. In response to this problem, we have developed a documented general-purpose BCI research and development platform called BCI2000. BCI2000 can incorporate alone or in combination any brain signals, signal processing methods, output devices, and operating protocols. This report is intended to describe to investigators, biomedical engineers, and computer scientists the concepts that the BC12000 system is based upon and gives examples of successful BCI implementations using this system. To date, we have used BCI2000 to create BCI systems for a variety of brain signals, processing methods, and applications. The data show that these systems function well in online operation and that BCI2000 satisfies the stringent real-time requirements of BCI systems. By substantially reducing labor and cost, BCI2000 facilitates the implementation of different BCI systems and other psychophysiological experiments. It is available with full documentation and free of charge for research or educational purposes and is currently being used in a variety of studies by many research groups.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Is the P300 component a manifestation of context updating?

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Direct cortical control of 3D neuroprosthetic devices.

              Three-dimensional (3D) movement of neuroprosthetic devices can be controlled by the activity of cortical neurons when appropriate algorithms are used to decode intended movement in real time. Previous studies assumed that neurons maintain fixed tuning properties, and the studies used subjects who were unaware of the movements predicted by their recorded units. In this study, subjects had real-time visual feedback of their brain-controlled trajectories. Cell tuning properties changed when used for brain-controlled movements. By using control algorithms that track these changes, subjects made long sequences of 3D movements using far fewer cortical units than expected. Daily practice improved movement accuracy and the directional tuning of these units.
                Bookmark

                Author and article information

                Journal
                IEEE Transactions on Neural Systems and Rehabilitation Engineering
                IEEE Trans. Neural Syst. Rehabil. Eng.
                Institute of Electrical and Electronics Engineers (IEEE)
                1534-4320
                1558-0210
                June 2003
                June 2003
                : 11
                : 2
                : 94-109
                Article
                10.1109/TNSRE.2003.814799
                © 2003
                Product

                Comments

                Comment on this article