22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Renal afferent arteriolar and tubuloglomerular feedback reactivity in mice with conditional deletions of adenosine 1 receptors.

      American Journal of Physiology - Renal Physiology
      Adenosine, pharmacology, Animals, Arterioles, drug effects, physiology, Blood Pressure, Glomerular Filtration Rate, Heart Rate, Kidney, blood supply, Mice, Mice, Transgenic, Receptor, Adenosine A1, genetics, metabolism, Vasoconstriction

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adenosine 1 receptors (A1AR) have been shown in previous experiments to play a major role in the tubuloglomerular feedback (TGF) constrictor response of afferent arterioles (AA) to increased loop of Henle flow. Overexpression studies have pointed to a critical role of vascular A1AR, but it has remained unclear whether selective deletion of A1AR from smooth muscle cells is sufficient to abolish TGF responsiveness. To address this question, we have determined TGF response magnitude in mice in which vascular A1AR deletion was achieved using the loxP recombination approach with cre recombinase being controlled by a smooth muscle actin promoter (SmCre/A1ARff). Effective vascular deletion of A1AR was affirmed by absence of vasoconstrictor responses to adenosine or cyclohexyl adenosine (CHA) in microperfused AA. Elevation of loop of Henle flow from 0 to 30 nl/min caused a 22.1 ± 3.1% reduction of stop flow pressure in control mice and of 7.2 ± 1.5% in SmCre/A1ARff mice (P < 0.001). Maintenance of residual TGF activity despite absence of A1AR-mediated responses in AA suggests participation of extravascular A1AR in TGF. Support for this notion comes from the observation that deletion of A1ARff by nestin-driven cre causes an identical TGF response reduction (7.3 ± 2.4% in NestinCre/A1ARff vs. 20.3 ± 2.7% in controls), whereas AA responsiveness was reduced but not abolished. A1AR on AA smooth muscle cells are primarily responsible for TGF activation, but A1AR on extravascular cells, perhaps mesangial cells, appear to contribute to the TGF response.

          Related collections

          Author and article information

          Comments

          Comment on this article