57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gambogic acid synergistically potentiates cisplatin-induced apoptosis in non-small-cell lung cancer through suppressing NF- κB and MAPK/HO-1 signalling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Gambogic acid (GA) has been reported to have potent anticancer activity and is authorised to be tested in phase II clinical trials for treatment of non-small-cell lung cancer (NSCLC). The present study aims to investigate whether GA would be synergistic with cisplatin (CDDP) against the NSCLC.

          Methods:

          1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), combination index (CI) isobologram, western blot, quantitative PCR, flow cytometry, electrophoretic mobility shift assay, xenograft tumour models and terminal deoxynucleotide transferase-mediated dUTP nick-end labelling analysis were used in this study.

          Results:

          The cell viability results showed that sequential CDDP-GA treatment resulted in a strong synergistic action in A549, NCI-H460, and NCI-H1299 cell lines, whereas the reverse sequence and simultaneous treatments led to a slight synergistic or additive action. Increased sub-G1 phase cells and enhanced PARP cleavage demonstrated that the sequence of CDDP-GA treatment markedly increased apoptosis in comparison with other treatments. Furthermore, the sequential combination could enhance the activation of caspase-3, -8, and 9, increase the expression of Fas and Bax, and decrease the expression of Bcl-2, survivin and X-inhibitor of apoptosis protein (X-IAP) in A549 and NCI-H460 cell lines. In addition, increased apoptosis was correlated with enhanced reactive oxygen species generation. Importantly, it was found that, followed by CDDP treatment, GA could inhibit NF- κB and mitogen-activated protein kinase (MAPK)/heme oxygenase-1 (HO-1) signalling pathways, which have been validated to reduce ROS release and confer CDDP resistance. The roles of NF- κB and MAPK pathways were further confirmed by using specific inhibitors, which significantly increased ROS release and apoptosis induced by the sequential combination of CDDP and GA. Moreover, our results indicated that the combination of CDDP and GA exerted increased antitumour effects on A549 xenograft models through inhibiting NF- κB, HO-1, and subsequently inducing apoptosis.

          Conclusion:

          Gambogic acid sensitises lung cancer cells to CDDP in vitro and in vivo in NSCLC through inactivation of NF- κB and MAPK/HO-1 signalling pathways, providing a rationale for the combined use of CDDP and GA in lung cancer chemotherapy.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors.

          A generalized method for analyzing the effects of multiple drugs and for determining summation, synergism and antagonism has been proposed. The derived, generalized equations are based on kinetic principles. The method is relatively simple and is not limited by whether the dose-effect relationships are hyperbolic or sigmoidal, whether the effects of the drugs are mutually exclusive or nonexclusive, whether the ligand interactions are competitive, noncompetitive or uncompetitive, whether the drugs are agonists or antagonists, or the number of drugs involved. The equations for the two most widely used methods for analyzing synergism, antagonism and summation of effects of multiple drugs, the isobologram and fractional product concepts, have been derived and been shown to have limitations in their applications. These two methods cannot be used indiscriminately. The equations underlying these two methods can be derived from a more generalized equation previously developed by us (59). It can be shown that the isobologram is valid only for drugs whose effects are mutually exclusive, whereas the fractional product method is valid only for mutually nonexclusive drugs which have hyperbolic dose-effect curves. Furthermore, in the isobol method, it is laborious to find proper combinations of drugs that would produce an iso-effective curve, and the fractional product method tends to give indication of synergism, since it underestimates the summation of the effect of mutually nonexclusive drugs that have sigmoidal dose-effect curves. The method described herein is devoid of these deficiencies and limitations. The simplified experimental design proposed for multiple drug-effect analysis has the following advantages: It provides a simple diagnostic plot (i.e., the median-effect plot) for evaluating the applicability of the data, and provides parameters that can be directly used to obtain a general equation for the dose-effect relation; the analysis which involves logarithmic conversion and linear regression can be readily carried out with a simple programmable electronic calculator and does not require special graph paper or tables; and the simplicity of the equation allows flexibility of application and the use of a minimum number of data points. This method has been used to analyze experimental data obtained from enzymatic, cellular and animal systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Caspase substrates and cellular remodeling.

            The caspases are unique proteases that mediate the major morphological changes of apoptosis and various other cellular remodeling processes. As we catalog and study the myriad proteins subject to cleavage by caspases, we are beginning to appreciate the full functional repertoire of these enzymes. Here, we examine current knowledge about caspase cleavages: what kinds of proteins are cut, in what contexts, and to what end. After reviewing basic caspase biology, we describe the technologies that enable high-throughput caspase substrate discovery and the datasets they have yielded. We discuss how caspases recognize their substrates and how cleavages are conserved among different metazoan organisms. Rather than comprehensively reviewing all known substrates, we use examples to highlight some functional impacts of caspase cuts during apoptosis and differentiation. Finally, we discuss the roles caspase substrates can play in medicine. Though great progress has been made in this field, many important areas still await exploration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cisplatin resistance: preclinical findings and clinical implications.

              Cisplatin is used for the treatment of many types of solid cancers. While testicular cancers respond remarkably well to cisplatin, the therapeutic efficacy of cisplatin for other solid cancers is limited because of intrinsic or acquired drug resistance. Our understanding about the mechanisms underlying cisplatin resistance has largely arisen from studies carried out with cancer cell lines in vitro. The process of cisplatin resistance appears to be multifactorial and includes changes in drug transport leading to decreased drug accumulation, increased drug detoxification, changes in DNA repair and damage bypass and/or alterations in the apoptotic cell death pathways. Translation of these preclinical findings to the clinic is emerging, but still scarce. The present review describes and discusses the clinical relevance of in vitro models by comparing the preclinical findings to data obtained in clinical studies. Copyright © 2010 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Br J Cancer
                Br. J. Cancer
                British Journal of Cancer
                Nature Publishing Group
                0007-0920
                1532-1827
                21 January 2014
                03 December 2013
                : 110
                : 2
                : 341-352
                Affiliations
                [1 ]Department of Pharmacology, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
                [2 ]Jiangsu Kanion Pharmaceutical Co. Ltd , Lianyungang 222001, People's Republic of China
                Author notes
                Article
                bjc2013752
                10.1038/bjc.2013.752
                3899775
                24300974
                fb93ae5c-7fee-4d3c-b340-7dbf3e5234e4
                Copyright © 2014 Cancer Research UK

                From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 15 September 2013
                : 23 October 2013
                : 29 October 2013
                Categories
                Translational Therapeutics

                Oncology & Radiotherapy
                gambogic acid,cisplatin,lung cancer,nf-κb,apoptosis,heme oxygenase-1
                Oncology & Radiotherapy
                gambogic acid, cisplatin, lung cancer, nf-κb, apoptosis, heme oxygenase-1

                Comments

                Comment on this article