29
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Increased Production of Adrenomedullin in Glomeruli from Anti-Glomerular Basement Membrane Glomerulonephritis Rats Treated with Methylprednisolone

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: Adrenomedullin (AM) has anti-proliferative and apoptotic effects on mesangial cells (MCs). Both effects play an important role in the progression of glomerulonephritis (GN). Glucocorticoids are widely used for the treatment of GN; however, the relationship between AM regulation in MCs or glomeruli and glucocorticoid treatment has not been clarified. Methods: Using the cultured rat MCs, AM secretion induced by methylprednisolone (m-PSL), and MC proliferation and apoptosis caused by AM were examined. In addition, the role of AM receptor antagonist, AM(22-52), was also investigated. Then, we made an anti-glomerular basement membrane (GBM) GN rat model and compared the AM expression and production in each glomeruli obtained from the control or m-PSL-treated anti-GBM GN rats. Results: In the cultured rat MCs, AM secretion was increased by m-PSL. MC proliferation was inhibited, while MC apoptosis was increased by AM. MC apoptosis was inhibited by the addition of AM(22-52). M-PSL therapy ameliorated the progression of anti-GBM GN rats. AM expression and production were increased in the glomeruli from m-PSL-treated rats compared to the controls. Conclusion: Considering the anti-proliferative and apoptotic effects of AM on MCs, increased AM in the glomeruli might participate in the improvement of glomerular lesions in anti-GBM GN rats treated with m-PSL.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Production of adrenomedullin in macrophage cell line and peritoneal macrophage.

          We demonstrate that adrenomedullin (AM) is produced and secreted from cultured murine monocyte/macrophage cell line (RAW 264.7) as well as mouse peritoneal macrophage. Immunoreactive (IR) AM secreted from RAW 264.7 cells was chromatographically identified to be native AM. To elucidate the regulation mechanism of AM production in macrophage, we examined the effects of various substances inducing differentiation or activation of monocyte/macrophage. Phorbol ester (TPA), retinoic acid (RA), lipopolysaccharide (LPS), and interferon-gamma (IFN-gamma) increased AM production 1.5-7-fold in RAW 264.7 cells in a dose- as well as time-dependent manner. By LPS stimulation, the AM mRNA level in RAW 264.7 cells was augmented up to 7-fold after 14 h incubation. RA exerted a synergistic effect when administered with TPA, LPS, or IFN-gamma, whereas IFN-gamma completely suppressed AM production in RAW 264.7 cells stimulated with LPS. Dexamethasone, hydrocortisone, estradiol, and transforming growth factor-beta dose-dependently suppressed AM production in RAW 264.7 cells. AM production was also investigated in mouse peritoneal macrophage. Primary mouse macrophage secreted IR-AM at a rate similar to that of RAW 264.7 cells, and its production was enhanced 9-fold by LPS stimulation. AM was found to increase basal secretion of tumor necrosis factor alpha (TNF-alpha) from RAW 264.7 cells, whereas AM suppressed the secretion of TNF-alpha and interleukin-6 from that stimulated with LPS. Thus, macrophage should be recognized as one of the major sources of AM circulating in the blood. Especially in cases of sepsis and inflammation, AM production in macrophage is augmented, and the secreted AM is deduced to function as a modulator of cytokine production.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Renal cell carcinoma in kidney allografts: a case series from a single center.

            In kidney transplant recipients, renal cell carcinoma (RCC) occurs either in the native kidney or, less frequently, in the grafted kidney. Here, we report a series of rare cases involving 5 patients from a single center who developed RCC in their grafts. The diagnosis was made serendipitously by ultrasound. The time lapse post-transplant varied from 4 to 17 years. Surgical treatment consisted of nephron-sparing surgery (NSS) in four cases and a secondary radical nephrectomy in one case. All tumors were less than 4 cm in diameter. The histopathology was clear cell type in four cases and papillary RCC in one case. Patients treated by NSS retained kidney function for 2 years or more, and none of them presented early neoplasia recurrence. In conclusion, NSS can be performed safely in grafted kidneys to treat incidental RCC. It prevents an immediate return to dialysis for patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adrenomedullin suppresses mitogenesis in rat mesangial cells via cAMP pathway.

              Adrenomedullin (ADM) is a vasoactive peptide that was recently localized in renal glomeruli. In the present study we explored whether ADM stimulates cAMP system in glomerular mesangial cells (MC) and whether it can via "negative-crosstalk" inhibit the mitogen-activated protein kinase (MAPK) and thus suppress proliferation of MC. We found that ADM elicited accumulation of cAMP and in situ activation of protein kinase A (PKA) in cultured MC. Addition of 1 nM ADM to incubation media inhibited the proliferation in both quiescent MC and cells maximally stimulated by PDGF and also decreased the activation of MAPK induced by PDGF. These results indicate that ADM can suppress MC mitogenesis and suggest that it may function as an endogenous paracrine supressor of MC proliferation.
                Bookmark

                Author and article information

                Journal
                NEE
                Nephron Exp Nephrol
                10.1159/issn.1660-2129
                Cardiorenal Medicine
                S. Karger AG
                1660-2129
                2006
                August 2006
                31 May 2006
                : 104
                : 1
                : e41-e47
                Affiliations
                First Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan
                Article
                93675 Nephron Exp Nephrol 2006;104:e41–e47
                10.1159/000093675
                16735801
                fba16223-f854-4a9b-9712-2863be0b3262
                © 2006 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 27 July 2005
                : 03 June 2006
                Page count
                Figures: 7, References: 29, Pages: 1
                Categories
                Original Paper

                Cardiovascular Medicine,Nephrology
                Mesangial cells,Methylprednisolone,Anti-GBM GN rats,Adrenomedullin

                Comments

                Comment on this article